/* $Id: amd7930.c,v 1.28 2001/10/13 01:47:29 davem Exp $
* drivers/sbus/audio/amd7930.c
*
* Copyright (C) 1996,1997 Thomas K. Dyas (tdyas@eden.rutgers.edu)
*
* This is the lowlevel driver for the AMD7930 audio chip found on all
* sun4c machines and some sun4m machines.
*
* The amd7930 is actually an ISDN chip which has a very simple
* integrated audio encoder/decoder. When Sun decided on what chip to
* use for audio, they had the brilliant idea of using the amd7930 and
* only connecting the audio encoder/decoder pins.
*
* Thanks to the AMD engineer who was able to get us the AMD79C30
* databook which has all the programming information and gain tables.
*
* Advanced Micro Devices' Am79C30A is an ISDN/audio chip used in the
* SparcStation 1+. The chip provides microphone and speaker interfaces
* which provide mono-channel audio at 8K samples per second via either
* 8-bit A-law or 8-bit mu-law encoding. Also, the chip features an
* ISDN BRI Line Interface Unit (LIU), I.430 S/T physical interface,
* which performs basic D channel LAPD processing and provides raw
* B channel data. The digital audio channel, the two ISDN B channels,
* and two 64 Kbps channels to the microprocessor are all interconnected
* via a multiplexer.
*
* This driver interfaces to the Linux HiSax ISDN driver, which performs
* all high-level Q.921 and Q.931 ISDN functions. The file is not
* itself a hardware driver; rather it uses functions exported by
* the AMD7930 driver in the sparcaudio subsystem (drivers/sbus/audio),
* allowing the chip to be simultaneously used for both audio and ISDN data.
* The hardware driver does _no_ buffering, but provides several callbacks
* which are called during interrupt service and should therefore run quickly.
*
* D channel transmission is performed by passing the hardware driver the
* address and size of an skb's data area, then waiting for a callback
* to signal successful transmission of the packet. A task is then
* queued to notify the HiSax driver that another packet may be transmitted.
*
* D channel reception is quite simple, mainly because of:
* 1) the slow speed of the D channel - 16 kbps, and
* 2) the presence of an 8- or 32-byte (depending on chip version) FIFO
* to buffer the D channel data on the chip
* Worst case scenario of back-to-back packets with the 8 byte buffer
* at 16 kbps yields an service time of 4 ms - long enough to preclude
* the need for fancy buffering. We queue a background task that copies
* data out of the receive buffer into an skb, and the hardware driver
* simply does nothing until we're done with the receive buffer and
* reset it for a new packet.
*
* B channel processing is more complex, because of:
* 1) the faster speed - 64 kbps,
* 2) the lack of any on-chip buffering (it interrupts for every byte), and
* 3) the lack of any chip support for HDLC encapsulation
*
* The HiSax driver can put each B channel into one of three modes -
* L1_MODE_NULL (channel disabled), L1_MODE_TRANS (transparent data relay),
* and L1_MODE_HDLC (HDLC encapsulation by low-level driver).
* L1_MODE_HDLC is the most common, used for almost all "pure" digital
* data sessions. L1_MODE_TRANS is used for ISDN audio.
*
* HDLC B channel transmission is performed via a large buffer into
* which the skb is copied while performing HDLC bit-stuffing. A CRC
* is computed and attached to the end of the buffer, which is then
* passed to the low-level routines for raw transmission. Once
* transmission is complete, the hardware driver is set to enter HDLC
* idle by successive transmission of mark (all 1) bytes, waiting for
* the ISDN driver to prepare another packet for transmission and
* deliver it.
*
* HDLC B channel reception is performed via an X-byte ring buffer
* divided into N sections of X/N bytes each. Defaults: X=256 bytes, N=4.
* As the hardware driver notifies us that each section is full, we
* hand it the next section and schedule a background task to peruse
* the received section, bit-by-bit, with an HDLC decoder. As
* packets are detected, they are copied into a large buffer while
* decoding HDLC bit-stuffing. The ending CRC is verified, and if
* it is correct, we alloc a new skb of the correct length (which we
* now know), copy the packet into it, and hand it to the upper layers.
* Optimization: for large packets, we hand the buffer (which also
* happens to be an skb) directly to the upper layer after an skb_trim,
* and alloc a new large buffer for future packets, thus avoiding a copy.
* Then we return to HDLC processing; state is saved between calls.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/version.h>
#include <linux/soundcard.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/sbus.h>
#include <asm/audioio.h>
#include "amd7930.h"
static __u8 bilinear2mulaw(__u8 data);
static __u8 mulaw2bilinear(__u8 data);
static __u8 linear2mulaw(__u16 data);
static __u16 mulaw2linear(__u8 data);
#if defined (AMD79C30_ISDN)
#include "../../isdn/hisax/hisax.h"
#include "../../isdn/hisax/isdnl1.h"
#include "../../isdn/hisax/foreign.h"
#endif
#define MAX_DRIVERS 1
static struct sparcaudio_driver drivers[MAX_DRIVERS];
static int num_drivers;
/* Each amd7930 chip has two bi-directional B channels and a D
* channel available to the uproc. This structure handles all
* the buffering needed to transmit and receive via a single channel.
*/
#define CHANNEL_AVAILABLE 0x00
#define CHANNEL_INUSE_AUDIO_IN 0x01
#define CHANNEL_INUSE_AUDIO_OUT 0x02
#define CHANNEL_INUSE_ISDN_B1 0x04
#define CHANNEL_INUSE_ISDN_B2 0x08
#define CHANNEL_INUSE 0xff
struct amd7930_channel {
/* Channel status */
u8 channel_status;
/* Current buffer that the driver is playing on channel */
volatile __u8 * output_ptr;
volatile u32 output_count;
u8 xmit_idle_char;
/* Callback routine (and argument) when output is done on */
void (*output_callback)(void *, unsigned char);
void * output_callback_arg;
/* Current buffer that the driver is recording on channel */
volatile __u8 * input_ptr;
volatile u32 input_count;
volatile u32 input_limit;
/* Callback routine (and argument) when input is done on */
void (*input_callback)(void *, unsigned char, unsigned long);
void * input_callback_arg;
int input_format;
int output_format;
};
/* Private information we store for each amd7930 chip. */
struct amd7930_info {
struct amd7930_channel D;
struct amd7930_channel Bb;
struct amd7930_channel Bc;
/* Pointers to which B channels are being used for what
* These three fields (Baudio, Bisdn[0], and Bisdn[1]) will either
* be NULL or point to one of the Bb/Bc structures above.
*/
struct amd7930_channel *Baudio;
struct amd7930_channel *Bisdn[2];
/* Device registers information. */
unsigned long regs;
unsigned long regs_size;
struct amd7930_map map;
/* Volume information. */
int pgain, rgain, mgain;
/* Device interrupt information. */
int irq;
volatile int ints_on;
/* Format type */
int format_type;
/* Someone to signal when the ISDN LIU state changes */
int liu_state;
void (*liu_callback)(void *);
void *liu_callback_arg;
};
/* Output a 16-bit quantity in the order that the amd7930 expects. */
static __inline__ void amd7930_out16(unsigned long regs, u16 val)
{
sbus_writeb(val & 0xff, regs + DR);
sbus_writeb(val >> 8, regs + DR);
}
/* gx, gr & stg gains. this table must contain 256 elements with
* the 0th being "infinity" (the magic value 9008). The remaining
* elements match sun's gain curve (but with higher resolution):
* -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps.
*/
static __const__ __u16 gx_coeff[256] = {
0x9008, 0x8b7c, 0x8b51, 0x8b45, 0x8b42, 0x8b3b, 0x8b36, 0x8b33,
0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22,
0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b,
0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb,
0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a,
0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213,
0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231,
0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4,
0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2,
0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa,
0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b,
0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b,
0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd,
0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808,
0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243,
0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224,
0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb,
0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33,
0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32,
0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323,
0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a,
0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23,
0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1,
0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333,
0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227,
0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6,
0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2,
0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba,
0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033,
0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021,
0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012,
0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e,
};
static __const__ __u16 ger_coeff[] = {
0x431f, /* 5. dB */
0x331f, /* 5.5 dB */
0x40dd, /* 6. dB */
0x11dd, /* 6.5 dB */
0x440f, /* 7. dB */
0x411f, /* 7.5 dB */
0x311f, /* 8. dB */
0x5520, /* 8.5 dB */
0x10dd, /* 9. dB */
0x4211, /* 9.5 dB */
0x410f, /* 10. dB */
0x111f, /* 10.5 dB */
0x600b, /* 11. dB */
0x00dd, /* 11.5 dB */
0x4210, /* 12. dB */
0x110f, /* 13. dB */
0x7200, /* 14. dB */
0x2110, /* 15. dB */
0x2200, /* 15.9 dB */
0x000b, /* 16.9 dB */
0x000f /* 18. dB */
};
#define NR_GER_COEFFS (sizeof(ger_coeff) / sizeof(ger_coeff[0]))
/* Enable amd7930 interrupts atomically. */
static void amd7930_enable_ints(struct amd7930_info *info)
{
unsigned long flags;
save_and_cli(flags);
if (!info->ints_on) {
sbus_writeb(AMR_INIT, info->regs + CR);
sbus_writeb(AM_INIT_ACTIVE, info->regs + DR);
info->ints_on = 1;
}
restore_flags(flags);
}
/* Disable amd7930 interrupts atomically. */
static __inline__ void amd7930_disable_ints(struct amd7930_info *info)
{
unsigned long flags;
save_and_cli(flags);
if (info->ints_on) {
sbus_writeb(AMR_INIT, info->regs + CR);
sbus_writeb(AM_INIT_ACTIVE | AM_INIT_DISABLE_INTS,
info->regs + DR);
info->ints_on = 0;
}
restore_flags(flags);
}
/* Idle amd7930 (no interrupts, no audio, no data) */
static __inline__ void amd7930_idle(struct amd7930_info *info)
{
unsigned long flags;
save_and_cli(flags);
if (info->ints_on) {
sbus_writeb(AMR_INIT, info->regs + CR);
sbus_writeb(0, info->regs + DR);
info->ints_on = 0;
}
restore_flags(flags);
}
/* Commit the local copy of the MAP registers to the amd7930. */
static void amd7930_write_map(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
unsigned long regs = info->regs;
struct amd7930_map *map = &info->map;
unsigned long flags;
save_and_cli(flags);
sbus_writeb(AMR_MAP_GX, regs + CR);
amd7930_out16(regs, map->gx);
sbus_writeb(AMR_MAP_GR, regs + CR);
amd7930_out16(regs, map->gr);
sbus_writeb(AMR_MAP_STGR, regs + CR);
amd7930_out16(regs, map->stgr);
sbus_writeb(AMR_MAP_GER, regs + CR);
amd7930_out16(regs, map->ger);
sbus_writeb(AMR_MAP_MMR1, regs + CR);
sbus_writeb(map->mmr1, regs + DR);
sbus_writeb(AMR_MAP_MMR2, regs + CR);
sbus_writeb(map->mmr2, regs + DR);
restore_flags(flags);
}
/* Update the MAP registers with new settings. */
static void amd7930_update_map(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
struct amd7930_map *map = &info->map;
int level;
map->gx = gx_coeff[info->rgain];
map->stgr = gx_coeff[info->mgain];
level = (info->pgain * (256 + NR_GER_COEFFS)) >> 8;
if (level >= 256) {
map->ger = ger_coeff[level - 256];
map->gr = gx_coeff[255];
} else {
map->ger = ger_coeff[0];
map->gr = gx_coeff[level];
}
amd7930_write_map(drv);
}
/* Bit of a hack here - if the HISAX ISDN driver has got INTSTAT debugging
* turned on, we send debugging characters to the ISDN driver:
*
* i# - Interrupt received - number from 0 to 7 is low three bits of IR
* > - Loaded a single char into the Dchan xmit FIFO
* + - Finished loading an xmit packet into the Dchan xmit FIFO
* < - Read a single char from the Dchan recv FIFO
* ! - Finished reading a packet from the Dchan recv FIFO
*
* This code needs to be removed if anything other than HISAX uses the ISDN
* driver, since D.output_callback_arg is assumed to be a certain struct ptr
*/
#ifdef L2FRAME_DEBUG
inline void debug_info(struct amd7930_info *info, char c)
{
struct IsdnCardState *cs;
if (!info || !info->D.output_callback_arg)
return;
cs = (struct IsdnCardState *) info->D.output_callback_arg;
if (!cs || !cs->status_write)
return;
if (cs->debug & L1_DEB_INTSTAT) {
*(cs->status_write++) = c;
if (cs->status_write > cs->status_end)
cs->status_write = cs->status_buf;
}
}
#else
#define debug_info(info,c)
#endif
static void fill_D_xmit_fifo(struct amd7930_info *info)
{
/* Send next byte(s) of outgoing data. */
while (info->D.output_ptr && info->D.output_count > 0 &&
(sbus_readb(info->regs + DSR2) & AMR_DSR2_TBE)) {
u8 byte = *(info->D.output_ptr);
/* Send the next byte and advance buffer pointer. */
sbus_writeb(byte, info->regs + DCTB);
info->D.output_ptr++;
info->D.output_count--;
debug_info(info, '>');
}
}
static void transceive_Dchannel(struct amd7930_info *info)
{
__u8 dummy;
#define D_XMIT_ERRORS (AMR_DER_COLLISION | AMR_DER_UNRN)
#define D_RECV_ERRORS (AMR_DER_RABRT | AMR_DER_RFRAME | AMR_DER_FCS | \
AMR_DER_OVFL | AMR_DER_UNFL | AMR_DER_OVRN)
/* Transmit if we can */
fill_D_xmit_fifo(info);
/* Done with the xmit buffer? Notify the midlevel driver. */
if (info->D.output_ptr != NULL && info->D.output_count == 0) {
info->D.output_ptr = NULL;
info->D.output_count = 0;
debug_info(info, '+');
if (info->D.output_callback)
(*info->D.output_callback)
(info->D.output_callback_arg,
sbus_readb(info->regs + DER));
/* sbus_readb(info->regs + DER) & D_XMIT_ERRORS); */
}
/* Read the next byte(s) of incoming data. */
while (sbus_readb(info->regs + DSR2) & AMR_DSR2_RBA) {
if (info->D.input_ptr &&
(info->D.input_count < info->D.input_limit)) {
/* Get the next byte and advance buffer pointer. */
*(info->D.input_ptr) = sbus_readb(info->regs + DCRB);
info->D.input_ptr++;
info->D.input_count++;
} else {
/* Overflow - should be detected by chip via RBLR
* so we'll just consume data until we see LBRP
*/
dummy = sbus_readb(info->regs + DCRB);
}
debug_info(info, '<');
if (sbus_readb(info->regs + DSR2) & AMR_DSR2_LBRP) {
__u8 der;
/* End of recv packet? Notify the midlevel driver. */
debug_info(info, '!');
info->D.input_ptr = NULL;
der = sbus_readb(info->regs + DER) & D_RECV_ERRORS;
/* Read receive byte count - advances FIFOs */
sbus_writeb(AMR_DLC_DRCR, info->regs + CR);
dummy = sbus_readb(info->regs + DR);
dummy = sbus_readb(info->regs + DR);
if (info->D.input_callback)
(*info->D.input_callback)
(info->D.input_callback_arg, der,
info->D.input_count);
}
}
}
long amd7930_xmit_idles = 0;
static void transceive_Bchannel(struct amd7930_channel *channel,
unsigned long reg)
{
/* Send the next byte of outgoing data. */
if (channel->output_ptr && channel->output_count > 0) {
u8 byte;
/* Send the next byte and advance buffer pointer. */
switch(channel->output_format) {
case AUDIO_ENCODING_ULAW:
case AUDIO_ENCODING_ALAW:
byte = *(channel->output_ptr);
sbus_writeb(byte, reg);
break;
case AUDIO_ENCODING_LINEAR8:
byte = bilinear2mulaw(*(channel->output_ptr));
sbus_writeb(byte, reg);
break;
case AUDIO_ENCODING_LINEAR:
if (channel->output_count >= 2) {
u16 val = channel->output_ptr[0] << 8;
val |= channel->output_ptr[1];
byte = linear2mulaw(val);
sbus_writeb(byte, reg);
channel->output_ptr++;
channel->output_count--;
};
};
channel->output_ptr++;
channel->output_count--;
/* Done with the buffer? Notify the midlevel driver. */
if (channel->output_count == 0) {
channel->output_ptr = NULL;
channel->output_count = 0;
if (channel->output_callback)
(*channel->output_callback)
(channel->output_callback_arg,1);
}
} else {
sbus_writeb(channel->xmit_idle_char, reg);
amd7930_xmit_idles++;
}
/* Read the next byte of incoming data. */
if (channel->input_ptr && channel->input_count > 0) {
/* Get the next byte and advance buffer pointer. */
switch(channel->input_format) {
case AUDIO_ENCODING_ULAW:
case AUDIO_ENCODING_ALAW:
*(channel->input_ptr) = sbus_readb(reg);
break;
case AUDIO_ENCODING_LINEAR8:
*(channel->input_ptr) = mulaw2bilinear(sbus_readb(reg));
break;
case AUDIO_ENCODING_LINEAR:
if (channel->input_count >= 2) {
u16 val = mulaw2linear(sbus_readb(reg));
channel->input_ptr[0] = val >> 8;
channel->input_ptr[1] = val & 0xff;
channel->input_ptr++;
channel->input_count--;
} else {
*(channel->input_ptr) = 0;
}
};
channel->input_ptr++;
channel->input_count--;
/* Done with the buffer? Notify the midlevel driver. */
if (channel->input_count == 0) {
channel->input_ptr = NULL;
channel->input_count = 0;
if (channel->input_callback)
(*channel->input_callback)
(channel->input_callback_arg, 1, 0);
}
}
}
/* Interrupt handler (The chip takes only one byte per interrupt. Grrr!) */
static void amd7930_interrupt(int irq, void *dev_id, struct pt_regs *intr_regs)
{
struct sparcaudio_driver *drv = (struct sparcaudio_driver *) dev_id;
struct amd7930_info *info = (struct amd7930_info *) drv->private;
unsigned long regs = info->regs;
__u8 ir;
/* Clear the interrupt. */
ir = sbus_readb(regs + IR);
if (ir & AMR_IR_BBUF) {
if (info->Bb.channel_status == CHANNEL_INUSE)
transceive_Bchannel(&info->Bb, info->regs + BBTB);
if (info->Bc.channel_status == CHANNEL_INUSE)
transceive_Bchannel(&info->Bc, info->regs + BCTB);
}
if (ir & (AMR_IR_DRTHRSH | AMR_IR_DTTHRSH | AMR_IR_DSRI)) {
debug_info(info, 'i');
debug_info(info, '0' + (ir&7));
transceive_Dchannel(info);
}
if (ir & AMR_IR_LSRI) {
__u8 lsr;
sbus_writeb(AMR_LIU_LSR, regs + CR);
lsr = sbus_readb(regs + DR);
info->liu_state = (lsr & 0x7) + 2;
if (info->liu_callback)
(*info->liu_callback)(info->liu_callback_arg);
}
}
static int amd7930_open(struct inode * inode, struct file * file,
struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
switch(MINOR(inode->i_rdev) & 0xf) {
case SPARCAUDIO_AUDIO_MINOR:
info->format_type = AUDIO_ENCODING_ULAW;
break;
case SPARCAUDIO_DSP_MINOR:
info->format_type = AUDIO_ENCODING_LINEAR8;
break;
case SPARCAUDIO_DSP16_MINOR:
info->format_type = AUDIO_ENCODING_LINEAR;
break;
};
MOD_INC_USE_COUNT;
return 0;
}
static void amd7930_release(struct inode * inode, struct file * file,
struct sparcaudio_driver *drv)
{
/* amd7930_disable_ints(drv->private); */
MOD_DEC_USE_COUNT;
}
static void request_Baudio(struct amd7930_info *info)
{
if (info->Bb.channel_status == CHANNEL_AVAILABLE) {
info->Bb.channel_status = CHANNEL_INUSE;
info->Baudio = &info->Bb;
/* Multiplexor map - audio (Ba) to Bb */
sbus_writeb(AMR_MUX_MCR1, info->regs + CR);
sbus_writeb(AM_MUX_CHANNEL_Ba | (AM_MUX_CHANNEL_Bb << 4),
info->regs + DR);
/* Enable B channel interrupts */
sbus_writeb(AMR_MUX_MCR4, info->regs + CR);
sbus_writeb(AM_MUX_MCR4_ENABLE_INTS, info->regs + DR);
} else if (info->Bc.channel_status == CHANNEL_AVAILABLE) {
info->Bc.channel_status = CHANNEL_INUSE;
info->Baudio = &info->Bc;
/* Multiplexor map - audio (Ba) to Bc */
sbus_writeb(AMR_MUX_MCR1, info->regs + CR);
sbus_writeb(AM_MUX_CHANNEL_Ba | (AM_MUX_CHANNEL_Bc << 4),
info->regs + DR);
/* Enable B channel interrupts */
sbus_writeb(AMR_MUX_MCR4, info->regs + CR);
sbus_writeb(AM_MUX_MCR4_ENABLE_INTS, info->regs + DR);
}
}
static void release_Baudio(struct amd7930_info *info)
{
if (info->Baudio) {
info->Baudio->channel_status = CHANNEL_AVAILABLE;
sbus_writeb(AMR_MUX_MCR1, info->regs + CR);
sbus_writeb(0, info->regs + DR);
info->Baudio = NULL;
if (info->Bb.channel_status == CHANNEL_AVAILABLE &&
info->Bc.channel_status == CHANNEL_AVAILABLE) {
/* Disable B channel interrupts */
sbus_writeb(AMR_MUX_MCR4, info->regs + CR);
sbus_writeb(0, info->regs + DR);
}
}
}
static void amd7930_start_output(struct sparcaudio_driver *drv,
__u8 * buffer, unsigned long count)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if (! info->Baudio)
request_Baudio(info);
if (info->Baudio) {
info->Baudio->output_ptr = buffer;
info->Baudio->output_count = count;
info->Baudio->output_format = info->format_type;
info->Baudio->output_callback = (void *) &sparcaudio_output_done;
info->Baudio->output_callback_arg = (void *) drv;
info->Baudio->xmit_idle_char = 0;
}
}
static void amd7930_stop_output(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if (info->Baudio) {
info->Baudio->output_ptr = NULL;
info->Baudio->output_count = 0;
if (! info->Baudio->input_ptr)
release_Baudio(info);
}
}
static void amd7930_start_input(struct sparcaudio_driver *drv,
__u8 * buffer, unsigned long count)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if (! info->Baudio)
request_Baudio(info);
if (info->Baudio) {
info->Baudio->input_ptr = buffer;
info->Baudio->input_count = count;
info->Baudio->input_format = info->format_type;
info->Baudio->input_callback = (void *) &sparcaudio_input_done;
info->Baudio->input_callback_arg = (void *) drv;
}
}
static void amd7930_stop_input(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if (info->Baudio) {
info->Baudio->input_ptr = NULL;
info->Baudio->input_count = 0;
if (! info->Baudio->output_ptr)
release_Baudio(info);
}
}
static void amd7930_sunaudio_getdev(struct sparcaudio_driver *drv,
audio_device_t * audinfo)
{
strncpy(audinfo->name, "SUNW,am79c30", sizeof(audinfo->name) - 1);
strncpy(audinfo->version, "a", sizeof(audinfo->version) - 1);
strncpy(audinfo->config, "onboard1", sizeof(audinfo->config) - 1);
}
static int amd7930_sunaudio_getdev_sunos(struct sparcaudio_driver *drv)
{
return AUDIO_DEV_AMD;
}
static int amd7930_get_formats(struct sparcaudio_driver *drv)
{
return (AFMT_MU_LAW | AFMT_A_LAW | AFMT_U8 | AFMT_S16_BE);
}
static int amd7930_get_output_ports(struct sparcaudio_driver *drv)
{
return (AUDIO_SPEAKER | AUDIO_HEADPHONE);
}
static int amd7930_get_input_ports(struct sparcaudio_driver *drv)
{
return (AUDIO_MICROPHONE);
}
static int amd7930_set_output_volume(struct sparcaudio_driver *drv, int vol)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
info->pgain = vol;
amd7930_update_map(drv);
return 0;
}
static int amd7930_get_output_volume(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
return info->pgain;
}
static int amd7930_set_input_volume(struct sparcaudio_driver *drv, int vol)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
info->rgain = vol;
amd7930_update_map(drv);
return 0;
}
static int amd7930_get_input_volume(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
return info->rgain;
}
static int amd7930_set_monitor_volume(struct sparcaudio_driver *drv, int vol)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
info->mgain = vol;
amd7930_update_map(drv);
return 0;
}
static int amd7930_get_monitor_volume(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
return info->mgain;
}
/* Cheats. The amd has the minimum capabilities we support */
static int amd7930_get_output_balance(struct sparcaudio_driver *drv)
{
return AUDIO_MID_BALANCE;
}
static int amd7930_get_input_balance(struct sparcaudio_driver *drv)
{
return AUDIO_MID_BALANCE;
}
static int amd7930_get_output_channels(struct sparcaudio_driver *drv)
{
return AUDIO_MIN_PLAY_CHANNELS;
}
static int amd7930_set_output_channels(struct sparcaudio_driver *drv,
int value)
{
return (value == AUDIO_MIN_PLAY_CHANNELS) ? 0 : -EINVAL;
}
static int amd7930_get_input_channels(struct sparcaudio_driver *drv)
{
return AUDIO_MIN_REC_CHANNELS;
}
static int
amd7930_set_input_channels(struct sparcaudio_driver *drv, int value)
{
return (value == AUDIO_MIN_REC_CHANNELS) ? 0 : -EINVAL;
}
static int amd7930_get_output_precision(struct sparcaudio_driver *drv)
{
return AUDIO_MIN_PLAY_PRECISION;
}
static int
amd7930_set_output_precision(struct sparcaudio_driver *drv, int value)
{
return (value == AUDIO_MIN_PLAY_PRECISION) ? 0 : -EINVAL;
}
static int amd7930_get_input_precision(struct sparcaudio_driver *drv)
{
return AUDIO_MIN_REC_PRECISION;
}
static int
amd7930_set_input_precision(struct sparcaudio_driver *drv, int value)
{
return (value == AUDIO_MIN_REC_PRECISION) ? 0 : -EINVAL;
}
static int amd7930_get_output_port(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if (info->map.mmr2 & AM_MAP_MMR2_LS)
return AUDIO_SPEAKER;
return AUDIO_HEADPHONE;
}
static int amd7930_set_output_port(struct sparcaudio_driver *drv, int value)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
switch (value) {
case AUDIO_HEADPHONE:
info->map.mmr2 &= ~AM_MAP_MMR2_LS;
break;
case AUDIO_SPEAKER:
info->map.mmr2 |= AM_MAP_MMR2_LS;
break;
default:
return -EINVAL;
};
amd7930_update_map(drv);
return 0;
}
/* Only a microphone here, so no troubles */
static int amd7930_get_input_port(struct sparcaudio_driver *drv)
{
return AUDIO_MICROPHONE;
}
static int amd7930_get_encoding(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if ((info->map.mmr1 & AM_MAP_MMR1_ALAW) &&
(info->format_type == AUDIO_ENCODING_ALAW))
return AUDIO_ENCODING_ALAW;
return info->format_type;
}
static int
amd7930_set_encoding(struct sparcaudio_driver *drv, int value)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
switch (value) {
case AUDIO_ENCODING_ALAW:
info->map.mmr1 |= AM_MAP_MMR1_ALAW;
break;
case AUDIO_ENCODING_LINEAR8:
case AUDIO_ENCODING_LINEAR:
case AUDIO_ENCODING_ULAW:
info->map.mmr1 &= ~AM_MAP_MMR1_ALAW;
break;
default:
return -EINVAL;
};
info->format_type = value;
amd7930_update_map(drv);
return 0;
}
/* This is what you get. Take it or leave it */
static int amd7930_get_output_rate(struct sparcaudio_driver *drv)
{
return AMD7930_RATE;
}
static int
amd7930_set_output_rate(struct sparcaudio_driver *drv, int value)
{
return (value == AMD7930_RATE) ? 0 : -EINVAL;
}
static int amd7930_get_input_rate(struct sparcaudio_driver *drv)
{
return AMD7930_RATE;
}
static int
amd7930_set_input_rate(struct sparcaudio_driver *drv, int value)
{
return (value == AMD7930_RATE) ? 0 : -EINVAL;
}
static int amd7930_get_output_muted(struct sparcaudio_driver *drv)
{
return 0;
}
static void amd7930_loopback(struct sparcaudio_driver *drv, unsigned int value)
{
struct amd7930_info *info = (struct amd7930_info *) drv->private;
if (value)
info->map.mmr1 |= AM_MAP_MMR1_LOOPBACK;
else
info->map.mmr1 &= ~AM_MAP_MMR1_LOOPBACK;
amd7930_update_map(drv);
}
static int amd7930_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg,
struct sparcaudio_driver *drv)
{
int retval = 0;
switch (cmd) {
case AUDIO_DIAG_LOOPBACK:
amd7930_loopback(drv, (unsigned int)arg);
break;
default:
retval = -EINVAL;
};
return retval;
}
/*
* ISDN operations
*
* Many of these routines take an "int dev" argument, which is simply
* an index into the drivers[] array. Currently, we only support a
* single AMD 7930 chip, so the value should always be 0. B channel
* operations require an "int chan", which should be 0 for channel B1
* and 1 for channel B2
*
* int amd7930_get_irqnum(int dev)
*
* returns the interrupt number being used by the chip. ISDN4linux
* uses this number to watch the interrupt during initialization and
* make sure something is happening.
*
* int amd7930_get_liu_state(int dev)
*
* returns the current state of the ISDN Line Interface Unit (LIU)
* as a number between 2 (state F2) and 7 (state F7). 0 may also be
* returned if the chip doesn't exist or the LIU hasn't been
* activated. The meanings of the states are defined in I.430, ISDN
* BRI Physical Layer Interface. The most important two states are
* F3 (shutdown) and F7 (syncronized).
*
* void amd7930_liu_init(int dev, void (*callback)(), void *callback_arg)
*
* initializes the LIU and optionally registers a callback to be
* signaled upon a change of LIU state. The callback will be called
* with a single opaque callback_arg Once the callback has been
* triggered, amd7930_get_liu_state can be used to determine the LIU
* current state.
*
* void amd7930_liu_activate(int dev, int priority)
*
* requests LIU activation at a given D-channel priority.
* Successful activatation is achieved upon entering state F7, which
* will trigger any callback previously registered with
* amd7930_liu_init.
*
* void amd7930_liu_deactivate(int dev)
*
* deactivates LIU. Outstanding D and B channel transactions are
* terminated rudely and without callback notification. LIU change
* of state callback will be triggered, however.
*
* void amd7930_dxmit(int dev, __u8 *buffer, unsigned int count,
* void (*callback)(void *, int), void *callback_arg)
*
* transmits a packet - specified with buffer, count - over the D-channel
* interface. Buffer should begin with the LAPD address field and
* end with the information field. FCS and flag sequences should not
* be included, nor is bit-stuffing required - all these functions are
* performed by the chip. The callback function will be called
* DURING THE TOP HALF OF AN INTERRUPT HANDLER and will be passed
* both the arbitrary callback_arg and an integer error indication:
*
* 0 - successful transmission; ready for next packet
* non-0 - error value from chip's DER (D-Channel Error Register):
* 4 - collision detect
* 128 - underrun; irq routine didn't service chip fast enough
*
* The callback routine should defer any time-consuming operations
* to a bottom-half handler; however, amd7930_dxmit may be called
* from within the callback to request back-to-back transmission of
* a second packet (without repeating the priority/collision mechanism)
*
* A comment about the "collision detect" error, which is signalled
* whenever the echoed D-channel data didn't match the transmitted
* data. This is part of ISDN's normal multi-drop T-interface
* operation, indicating that another device has attempted simultaneous
* transmission, but can also result from line noise. An immediate
* requeue via amd7930_dxmit is suggested, but repeated collision
* errors may indicate a more serious problem.
*
* void amd7930_drecv(int dev, __u8 *buffer, unsigned int size,
* void (*callback)(void *, int, unsigned int),
* void *callback_arg)
*
* register a buffer - buffer, size - into which a D-channel packet
* can be received. The callback function will be called DURING
* THE TOP HALF OF AN INTERRUPT HANDLER and will be passed an
* arbitrary callback_arg, an integer error indication and the length
* of the received packet, which will start with the address field,
* end with the information field, and not contain flag or FCS
* bytes. Bit-stuffing will already have been corrected for.
* Possible values of second callback argument "error":
*
* 0 - successful reception
* non-0 - error value from chip's DER (D-Channel Error Register):
* 1 - received packet abort
* 2 - framing error; non-integer number of bytes received
* 8 - FCS error; CRC sequence indicated corrupted data
* 16 - overflow error; packet exceeded size of buffer
* 32 - underflow error; packet smaller than required five bytes
* 64 - overrun error; irq routine didn't service chip fast enough
*
* int amd7930_bopen(int dev, int chan, u_char xmit_idle_char)
*
* This function should be called before any other operations on a B
* channel. In addition to arranging for interrupt handling and
* channel multiplexing, it sets the xmit_idle_char which is
* transmitted on the interface when no data buffer is available.
* Suggested values are: 0 for ISDN audio; FF for HDLC mark idle; 7E
* for HDLC flag idle. Returns 0 on a successful open; -1 on error,
* which is quite possible if audio and the other ISDN channel are
* already in use, since the Am7930 can only send two of the three
* channels to the processor
*
* void amd7930_bclose(int dev, int chan)
*
* Shuts down a B channel when no longer in use.
*
* void amd7930_bxmit(int dev, int chan, __u8 *buffer, unsigned int count,
* void (*callback)(void *), void *callback_arg)
*
* transmits a raw data block - specified with buffer, count - over
* the B channel interface specified by dev/chan. The callback
* function will be called DURING THE TOP HALF OF AN INTERRUPT
* HANDLER and will be passed the arbitrary callback_arg
*
* The callback routine should defer any time-consuming operations
* to a bottom-half handler; however, amd7930_bxmit may be called
* from within the callback to request back-to-back transmission of
* another data block
*
* void amd7930_brecv(int dev, int chan, __u8 *buffer, unsigned int size,
* void (*callback)(void *), void *callback_arg)
*
* receive a raw data block - specified with buffer, size - over the
* B channel interface specified by dev/chan. The callback function
* will be called DURING THE TOP HALF OF AN INTERRUPT HANDLER and
* will be passed the arbitrary callback_arg
*
* The callback routine should defer any time-consuming operations
* to a bottom-half handler; however, amd7930_brecv may be called
* from within the callback to register another buffer and ensure
* continuous B channel reception without loss of data
*
*/
#if defined (AMD79C30_ISDN)
static int amd7930_get_irqnum(int dev)
{
struct amd7930_info *info;
if (dev > num_drivers)
return(0);
info = (struct amd7930_info *) drivers[dev].private;
return info->irq;
}
static int amd7930_get_liu_state(int dev)
{
struct amd7930_info *info;
if (dev > num_drivers)
return(0);
info = (struct amd7930_info *) drivers[dev].private;
return info->liu_state;
}
static void amd7930_liu_init(int dev, void (*callback)(), void *callback_arg)
{
struct amd7930_info *info;
unsigned long flags;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
/* Set callback for LIU state change */
info->liu_callback = callback;
info->liu_callback_arg = callback_arg;
/* De-activate the ISDN Line Interface Unit (LIU) */
sbus_writeb(AMR_LIU_LMR1, info->regs + CR);
sbus_writeb(0, info->regs + DR);
/* Request interrupt when LIU changes state from/to F3/F7/F8 */
sbus_writeb(AMR_LIU_LMR2, info->regs + CR);
sbus_writeb(AM_LIU_LMR2_EN_F3_INT |
AM_LIU_LMR2_EN_F7_INT |
AM_LIU_LMR2_EN_F8_INT,
info->regs + DR);
/* amd7930_enable_ints(info); */
/* Activate the ISDN Line Interface Unit (LIU) */
sbus_writeb(AMR_LIU_LMR1, info->regs + CR);
sbus_writeb(AM_LIU_LMR1_LIU_ENABL, info->regs + DR);
restore_flags(flags);
}
static void amd7930_liu_activate(int dev, int priority)
{
struct amd7930_info *info;
unsigned long flags;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
/* Set D-channel access priority
*
* I.430 defines a priority mechanism based on counting 1s
* in the echo channel before transmitting
*
* Priority 0 is eight 1s; priority 1 is ten 1s; etc
*/
sbus_writeb(AMR_LIU_LPR, info->regs + CR);
sbus_writeb(priority & 0x0f, info->regs + DR);
/* request LIU activation */
sbus_writeb(AMR_LIU_LMR1, info->regs + CR);
sbus_writeb(AM_LIU_LMR1_LIU_ENABL | AM_LIU_LMR1_REQ_ACTIV,
info->regs + DR);
restore_flags(flags);
}
static void amd7930_liu_deactivate(int dev)
{
struct amd7930_info *info;
unsigned long flags;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
/* deactivate LIU */
sbus_writeb(AMR_LIU_LMR1, info->regs + CR);
sbus_writeb(0, info->regs + DR);
restore_flags(flags);
}
static void amd7930_dxmit(int dev, __u8 *buffer, unsigned int count,
void (*callback)(void *, int), void *callback_arg)
{
struct amd7930_info *info;
unsigned long flags;
__u8 dmr1;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
if (info->D.output_ptr) {
restore_flags(flags);
printk("amd7930_dxmit: transmitter in use\n");
return;
}
info->D.output_ptr = buffer;
info->D.output_count = count;
info->D.output_callback = callback;
info->D.output_callback_arg = callback_arg;
/* Enable D-channel Transmit Threshold interrupt; disable addressing */
sbus_writeb(AMR_DLC_DMR1, info->regs + CR);
dmr1 = sbus_readb(info->regs + DR);
dmr1 |= AMR_DLC_DMR1_DTTHRSH_INT;
dmr1 &= ~AMR_DLC_DMR1_EN_ADDRS;
sbus_writeb(dmr1, info->regs + DR);
/* Begin xmit by setting D-channel Transmit Byte Count Reg (DTCR) */
sbus_writeb(AMR_DLC_DTCR, info->regs + CR);
sbus_writeb(count & 0xff, info->regs + DR);
sbus_writeb((count >> 8) & 0xff, info->regs + DR);
/* Prime xmit FIFO */
/* fill_D_xmit_fifo(info); */
transceive_Dchannel(info);
restore_flags(flags);
}
static void amd7930_drecv(int dev, __u8 *buffer, unsigned int size,
void (*callback)(void *, int, unsigned int),
void *callback_arg)
{
struct amd7930_info *info;
unsigned long flags;
__u8 dmr1;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
if (info->D.input_ptr) {
restore_flags(flags);
printk("amd7930_drecv: receiver already has buffer!\n");
return;
}
info->D.input_ptr = buffer;
info->D.input_count = 0;
info->D.input_limit = size;
info->D.input_callback = callback;
info->D.input_callback_arg = callback_arg;
/* Enable D-channel Receive Threshold interrupt;
* Enable D-channel End of Receive Packet interrupt;
* Disable address recognition
*/
sbus_writeb(AMR_DLC_DMR1, info->regs + CR);
dmr1 = sbus_readb(info->regs + DR);
dmr1 |= AMR_DLC_DMR1_DRTHRSH_INT | AMR_DLC_DMR1_EORP_INT;
dmr1 &= ~AMR_DLC_DMR1_EN_ADDRS;
sbus_writeb(dmr1, info->regs + DR);
/* Set D-channel Receive Byte Count Limit Register */
sbus_writeb(AMR_DLC_DRCR, info->regs + CR);
sbus_writeb(size & 0xff, info->regs + DR);
sbus_writeb((size >> 8) & 0xff, info->regs + DR);
restore_flags(flags);
}
static int amd7930_bopen(int dev, unsigned int chan,
int mode, u_char xmit_idle_char)
{
struct amd7930_info *info;
unsigned long flags;
u8 tmp;
if (dev > num_drivers || chan<0 || chan>1)
return -1;
if (mode == L1_MODE_HDLC)
return -1;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
if (info->Bb.channel_status == CHANNEL_AVAILABLE) {
info->Bb.channel_status = CHANNEL_INUSE;
info->Bb.xmit_idle_char = xmit_idle_char;
info->Bisdn[chan] = &info->Bb;
/* Multiplexor map - isdn (B1/2) to Bb */
sbus_writeb(AMR_MUX_MCR2 + chan, info->regs + CR);
sbus_writeb((AM_MUX_CHANNEL_B1 + chan) |
(AM_MUX_CHANNEL_Bb << 4),
info->regs + DR);
} else if (info->Bc.channel_status == CHANNEL_AVAILABLE) {
info->Bc.channel_status = CHANNEL_INUSE;
info->Bc.xmit_idle_char = xmit_idle_char;
info->Bisdn[chan] = &info->Bc;
/* Multiplexor map - isdn (B1/2) to Bc */
sbus_writeb(AMR_MUX_MCR2 + chan, info->regs + CR);
sbus_writeb((AM_MUX_CHANNEL_B1 + chan) |
(AM_MUX_CHANNEL_Bc << 4),
info->regs + DR);
} else {
restore_flags(flags);
return (-1);
}
/* Enable B channel transmit */
sbus_writeb(AMR_LIU_LMR1, info->regs + CR);
tmp = sbus_readb(info->regs + DR);
tmp |= AM_LIU_LMR1_B1_ENABL + chan;
sbus_writeb(tmp, info->regs + DR);
/* Enable B channel interrupts */
sbus_writeb(AMR_MUX_MCR4, info->regs + CR);
sbus_writeb(AM_MUX_MCR4_ENABLE_INTS |
AM_MUX_MCR4_REVERSE_Bb |
AM_MUX_MCR4_REVERSE_Bc,
info->regs + DR);
restore_flags(flags);
return 0;
}
static void amd7930_bclose(int dev, unsigned int chan)
{
struct amd7930_info *info;
unsigned long flags;
if (dev > num_drivers || chan<0 || chan>1)
return;
info = (struct amd7930_info *) drivers[dev].private;
save_and_cli(flags);
if (info->Bisdn[chan]) {
u8 tmp;
info->Bisdn[chan]->channel_status = CHANNEL_AVAILABLE;
sbus_writeb(AMR_MUX_MCR2 + chan, info->regs + CR);
sbus_writeb(0, info->regs + DR);
info->Bisdn[chan] = NULL;
/* Disable B channel transmit */
sbus_writeb(AMR_LIU_LMR1, info->regs + CR);
tmp = sbus_readb(info->regs + DR);
tmp &= ~(AM_LIU_LMR1_B1_ENABL + chan);
sbus_writeb(tmp, info->regs + DR);
if (info->Bb.channel_status == CHANNEL_AVAILABLE &&
info->Bc.channel_status == CHANNEL_AVAILABLE) {
/* Disable B channel interrupts */
sbus_writeb(AMR_MUX_MCR4, info->regs + CR);
sbus_writeb(0, info->regs + DR);
}
}
restore_flags(flags);
}
static void amd7930_bxmit(int dev, unsigned int chan,
__u8 * buffer, unsigned long count,
void (*callback)(void *, int), void *callback_arg)
{
struct amd7930_info *info;
struct amd7930_channel *Bchan;
unsigned long flags;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
Bchan = info->Bisdn[chan];
if (Bchan) {
save_and_cli(flags);
Bchan->output_ptr = buffer;
Bchan->output_count = count;
Bchan->output_format = AUDIO_ENCODING_ULAW;
Bchan->output_callback = (void *) callback;
Bchan->output_callback_arg = callback_arg;
restore_flags(flags);
}
}
static void amd7930_brecv(int dev, unsigned int chan,
__u8 * buffer, unsigned long size,
void (*callback)(void *, int, unsigned int),
void *callback_arg)
{
struct amd7930_info *info;
struct amd7930_channel *Bchan;
unsigned long flags;
if (dev > num_drivers)
return;
info = (struct amd7930_info *) drivers[dev].private;
Bchan = info->Bisdn[chan];
if (Bchan) {
save_and_cli(flags);
Bchan->input_ptr = buffer;
Bchan->input_count = size;
Bchan->input_format = AUDIO_ENCODING_ULAW;
Bchan->input_callback = (void *) callback;
Bchan->input_callback_arg = callback_arg;
restore_flags(flags);
}
}
struct foreign_interface amd7930_foreign_interface = {
amd7930_get_irqnum,
amd7930_get_liu_state,
amd7930_liu_init,
amd7930_liu_activate,
amd7930_liu_deactivate,
amd7930_dxmit,
amd7930_drecv,
amd7930_bopen,
amd7930_bclose,
amd7930_bxmit,
amd7930_brecv
};
EXPORT_SYMBOL(amd7930_foreign_interface);
#endif
/*
* Device detection and initialization.
*/
static struct sparcaudio_operations amd7930_ops = {
amd7930_open,
amd7930_release,
amd7930_ioctl,
amd7930_start_output,
amd7930_stop_output,
amd7930_start_input,
amd7930_stop_input,
amd7930_sunaudio_getdev,
amd7930_set_output_volume,
amd7930_get_output_volume,
amd7930_set_input_volume,
amd7930_get_input_volume,
amd7930_set_monitor_volume,
amd7930_get_monitor_volume,
NULL, /* amd7930_set_output_balance */
amd7930_get_output_balance,
NULL, /* amd7930_set_input_balance */
amd7930_get_input_balance,
amd7930_set_output_channels,
amd7930_get_output_channels,
amd7930_set_input_channels,
amd7930_get_input_channels,
amd7930_set_output_precision,
amd7930_get_output_precision,
amd7930_set_input_precision,
amd7930_get_input_precision,
amd7930_set_output_port,
amd7930_get_output_port,
NULL, /* amd7930_set_input_port */
amd7930_get_input_port,
amd7930_set_encoding,
amd7930_get_encoding,
amd7930_set_encoding,
amd7930_get_encoding,
amd7930_set_output_rate,
amd7930_get_output_rate,
amd7930_set_input_rate,
amd7930_get_input_rate,
amd7930_sunaudio_getdev_sunos,
amd7930_get_output_ports,
amd7930_get_input_ports,
NULL, /* amd7930_set_output_muted */
amd7930_get_output_muted,
NULL, /* amd7930_set_output_pause */
NULL, /* amd7930_get_output_pause */
NULL, /* amd7930_set_input_pause */
NULL, /* amd7930_get_input_pause */
NULL, /* amd7930_set_output_samples */
NULL, /* amd7930_get_output_samples */
NULL, /* amd7930_set_input_samples */
NULL, /* amd7930_get_input_samples */
NULL, /* amd7930_set_output_error */
NULL, /* amd7930_get_output_error */
NULL, /* amd7930_set_input_error */
NULL, /* amd7930_get_input_error */
amd7930_get_formats,
};
/* Attach to an amd7930 chip given its PROM node. */
static int amd7930_attach(struct sparcaudio_driver *drv, int node,
struct sbus_bus *sbus, struct sbus_dev *sdev)
{
struct linux_prom_registers regs;
struct linux_prom_irqs irq;
struct resource res, *resp;
struct amd7930_info *info;
int err;
/* Allocate our private information structure. */
drv->private = kmalloc(sizeof(struct amd7930_info), GFP_KERNEL);
if (drv->private == NULL)
return -ENOMEM;
/* Point at the information structure and initialize it. */
drv->ops = &amd7930_ops;
info = (struct amd7930_info *)drv->private;
memset(info, 0, sizeof(*info));
info->ints_on = 1; /* force disable below */
drv->dev = sdev;
/* Map the registers into memory. */
prom_getproperty(node, "reg", (char *)®s, sizeof(regs));
if (sbus && sdev) {
resp = &sdev->resource[0];
} else {
resp = &res;
res.start = regs.phys_addr;
res.end = res.start + regs.reg_size - 1;
res.flags = IORESOURCE_IO | (regs.which_io & 0xff);
}
info->regs_size = regs.reg_size;
info->regs = sbus_ioremap(resp, 0, regs.reg_size, "amd7930");
if (!info->regs) {
printk(KERN_ERR "amd7930: could not remap registers\n");
kfree(drv->private);
return -EIO;
}
/* Put amd7930 in idle mode (interrupts disabled) */
amd7930_idle(info);
/* Enable extended FIFO operation on D-channel */
sbus_writeb(AMR_DLC_EFCR, info->regs + CR);
sbus_writeb(AMR_DLC_EFCR_EXTEND_FIFO, info->regs + DR);
sbus_writeb(AMR_DLC_DMR4, info->regs + CR);
sbus_writeb(/* AMR_DLC_DMR4_RCV_30 | */ AMR_DLC_DMR4_XMT_14,
info->regs + DR);
/* Attach the interrupt handler to the audio interrupt. */
prom_getproperty(node, "intr", (char *)&irq, sizeof(irq));
info->irq = irq.pri;
request_irq(info->irq, amd7930_interrupt,
SA_INTERRUPT, "amd7930", drv);
amd7930_enable_ints(info);
/* Initalize the local copy of the MAP registers. */
memset(&info->map, 0, sizeof(info->map));
info->map.mmr1 = AM_MAP_MMR1_GX | AM_MAP_MMR1_GER |
AM_MAP_MMR1_GR | AM_MAP_MMR1_STG;
/* Start out with speaker, microphone */
info->map.mmr2 |= (AM_MAP_MMR2_LS | AM_MAP_MMR2_AINB);
/* Set the default audio parameters. */
info->rgain = 128;
info->pgain = 200;
info->mgain = 0;
info->format_type = AUDIO_ENCODING_ULAW;
info->Bb.input_format = AUDIO_ENCODING_ULAW;
info->Bb.output_format = AUDIO_ENCODING_ULAW;
info->Bc.input_format = AUDIO_ENCODING_ULAW;
info->Bc.output_format = AUDIO_ENCODING_ULAW;
amd7930_update_map(drv);
/* Register the amd7930 with the midlevel audio driver. */
err = register_sparcaudio_driver(drv, 1);
if (err < 0) {
printk(KERN_ERR "amd7930: unable to register\n");
free_irq(info->irq, drv);
sbus_iounmap(info->regs, info->regs_size);
kfree(drv->private);
return -EIO;
}
/* Announce the hardware to the user. */
printk(KERN_INFO "amd7930 at %lx irq %d\n",
info->regs, info->irq);
/* Success! */
return 0;
}
/* Detach from an amd7930 chip given the device structure. */
static void __exit amd7930_detach(struct sparcaudio_driver *drv)
{
struct amd7930_info *info = (struct amd7930_info *)drv->private;
unregister_sparcaudio_driver(drv, 1);
amd7930_idle(info);
free_irq(info->irq, drv);
sbus_iounmap(info->regs, info->regs_size);
kfree(drv->private);
}
/* Probe for the amd7930 chip and then attach the driver. */
static int __init amd7930_init(void)
{
struct sbus_bus *sbus;
struct sbus_dev *sdev;
int node;
/* Try to find the sun4c "audio" node first. */
node = prom_getchild(prom_root_node);
node = prom_searchsiblings(node, "audio");
if (node && amd7930_attach(&drivers[0], node, NULL, NULL) == 0)
num_drivers = 1;
else
num_drivers = 0;
/* Probe each SBUS for amd7930 chips. */
for_all_sbusdev(sdev, sbus) {
if (!strcmp(sdev->prom_name, "audio")) {
/* Don't go over the max number of drivers. */
if (num_drivers >= MAX_DRIVERS)
continue;
if (amd7930_attach(&drivers[num_drivers],
sdev->prom_node, sdev->bus, sdev) == 0)
num_drivers++;
}
}
/* Only return success if we found some amd7930 chips. */
return (num_drivers > 0) ? 0 : -EIO;
}
static void __exit amd7930_exit(void)
{
register int i;
for (i = 0; i < num_drivers; i++) {
amd7930_detach(&drivers[i]);
num_drivers--;
}
}
module_init(amd7930_init);
module_exit(amd7930_exit);
MODULE_LICENSE("GPL");
/*************************************************************/
/* Audio format conversion */
/*************************************************************/
/* Translation tables */
static unsigned char ulaw[] = {
3, 7, 11, 15, 19, 23, 27, 31,
35, 39, 43, 47, 51, 55, 59, 63,
66, 68, 70, 72, 74, 76, 78, 80,
82, 84, 86, 88, 90, 92, 94, 96,
98, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 109, 110, 111, 112, 113,
113, 114, 114, 115, 115, 116, 116, 117,
117, 118, 118, 119, 119, 120, 120, 121,
121, 121, 122, 122, 122, 122, 123, 123,
123, 123, 124, 124, 124, 124, 125, 125,
125, 125, 125, 125, 126, 126, 126, 126,
126, 126, 126, 126, 127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
253, 249, 245, 241, 237, 233, 229, 225,
221, 217, 213, 209, 205, 201, 197, 193,
190, 188, 186, 184, 182, 180, 178, 176,
174, 172, 170, 168, 166, 164, 162, 160,
158, 157, 156, 155, 154, 153, 152, 151,
150, 149, 148, 147, 146, 145, 144, 143,
143, 142, 142, 141, 141, 140, 140, 139,
139, 138, 138, 137, 137, 136, 136, 135,
135, 135, 134, 134, 134, 134, 133, 133,
133, 133, 132, 132, 132, 132, 131, 131,
131, 131, 131, 131, 130, 130, 130, 130,
130, 130, 130, 130, 129, 129, 129, 129,
129, 129, 129, 129, 129, 129, 129, 129,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static __u8 mulaw2bilinear(__u8 data)
{
return ulaw[data];
}
static unsigned char linear[] = {
0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 2, 0, 0, 0, 3,
0, 0, 0, 4, 0, 0, 0, 5,
0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0, 8, 0, 0, 0, 9,
0, 0, 0, 10, 0, 0, 0, 11,
0, 0, 0, 12, 0, 0, 0, 13,
0, 0, 0, 14, 0, 0, 0, 15,
0, 0, 16, 0, 17, 0, 18, 0,
19, 0, 20, 0, 21, 0, 22, 0,
23, 0, 24, 0, 25, 0, 26, 0,
27, 0, 28, 0, 29, 0, 30, 0,
31, 0, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45,
46, 48, 50, 52, 54, 56, 58, 60,
62, 65, 69, 73, 77, 83, 91, 103,
255, 231, 219, 211, 205, 201, 197, 193,
190, 188, 186, 184, 182, 180, 178, 176,
174, 173, 172, 171, 170, 169, 168, 167,
166, 165, 164, 163, 162, 161, 160, 0,
159, 0, 158, 0, 157, 0, 156, 0,
155, 0, 154, 0, 153, 0, 152, 0,
151, 0, 150, 0, 149, 0, 148, 0,
147, 0, 146, 0, 145, 0, 144, 0,
0, 143, 0, 0, 0, 142, 0, 0,
0, 141, 0, 0, 0, 140, 0, 0,
0, 139, 0, 0, 0, 138, 0, 0,
0, 137, 0, 0, 0, 136, 0, 0,
0, 135, 0, 0, 0, 134, 0, 0,
0, 133, 0, 0, 0, 132, 0, 0,
0, 131, 0, 0, 0, 130, 0, 0,
0, 129, 0, 0, 0, 128, 0, 0
};
static __u8 bilinear2mulaw(__u8 data)
{
return linear[data];
}
static int exp_lut[256] = {
0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
};
#define BIAS 0x84
#define CLIP 32635
#define SWAP_ENDIAN(x) ((x >> 8) | ((x & 0xff) << 8))
static __u8 linear2mulaw(__u16 data)
{
static int sign, exponent, mantissa;
/* not really sure, if swapping is ok - comment next line to disable it */
data = SWAP_ENDIAN(data);
sign = (data >> 8) & 0x80;
if (sign != 0) data = -data;
if (data > CLIP) data = CLIP;
data += BIAS;
exponent = exp_lut[(data >> 7) & 0xFF];
mantissa = (data >> (exponent + 3)) & 0x0F;
return (~(sign | (exponent << 4) | mantissa));
}
static __u16 mulaw2linear(__u8 data)
{
/* this conversion is not working */
return data;
}
#if 0
#define INOUT(x,y) (((x) << 16) | (y))
static int convert_audio(int in_format, int out_format, __u8* buffer, int count)
{
static int i,sign,exponent;
static __u16 data;
if (in_format == out_format) return count;
switch(INOUT(in_format, out_format)) {
case INOUT(AUDIO_ENCODING_ULAW, AUDIO_ENCODING_LINEAR8):
for (i = 0;i < count; i++) {
buffer[i] = ulaw[buffer[i]];
};
break;
case INOUT(AUDIO_ENCODING_ULAW, AUDIO_ENCODING_LINEAR):
break;
case INOUT(AUDIO_ENCODING_LINEAR, AUDIO_ENCODING_ULAW):
/* buffer is two-byte => convert to first */
for (i = 0; i < count/2; i++) {
data = ((__u16*)buffer)[i];
sign = (data >> 8) & 0x80;
if (data > CLIP) data = CLIP;
data += BIAS;
exponent = exp_lut[(data >> 7) & 0xFF];
buffer[i] = ~(sign | (exponent << 4) |
((data >> (exponent + 3)) & 0x0F));
};
break;
case INOUT(AUDIO_ENCODING_LINEAR8, AUDIO_ENCODING_ULAW):
for (i = 0; i < count; i++) {
buffer[i] = linear[buffer[i]];
};
break;
default:
return 0;
};
return count;
}
#undef INOUT
#endif
#undef BIAS
#undef CLIP
#undef SWAP_ENDIAN