/*****************************************************************************/
/*
* sm_wss.c -- soundcard radio modem driver, WSS (half duplex) driver
*
* Copyright (C) 1996 Thomas Sailer (sailer@ife.ee.ethz.ch)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Please note that the GPL allows you to use the driver, NOT the radio.
* In order to use the radio, you need a license from the communications
* authority of your country.
*
*/
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/ioport.h>
#include <linux/soundmodem.h>
#include "sm.h"
#include "smdma.h"
/* --------------------------------------------------------------------- */
/*
* currently this module is supposed to support both module styles, i.e.
* the old one present up to about 2.1.9, and the new one functioning
* starting with 2.1.21. The reason is I have a kit allowing to compile
* this module also under 2.0.x which was requested by several people.
* This will go in 2.2
*/
#include <linux/version.h>
#include <asm/uaccess.h>
/* --------------------------------------------------------------------- */
struct sc_state_wss {
unsigned char revwss, revid, revv, revcid;
unsigned char fmt[2];
unsigned char crystal;
};
#define SCSTATE ((struct sc_state_wss *)(&sm->hw))
/* --------------------------------------------------------------------- */
#define WSS_CONFIG(iobase) (iobase+0)
#define WSS_STATUS(iobase) (iobase+3)
#define WSS_CODEC_IA(iobase) (iobase+4)
#define WSS_CODEC_ID(iobase) (iobase+5)
#define WSS_CODEC_STATUS(iobase) (iobase+6)
#define WSS_CODEC_DATA(iobase) (iobase+7)
#define WSS_EXTENT 8
#define CS423X_HOTFIX
/* --------------------------------------------------------------------- */
static void write_codec(struct net_device *dev, unsigned char idx,
unsigned char data)
{
int timeout = 900000;
/* wait until codec ready */
while (timeout > 0 && inb(WSS_CODEC_IA(dev->base_addr)) & 0x80)
timeout--;
outb(idx, WSS_CODEC_IA(dev->base_addr));
outb(data, WSS_CODEC_ID(dev->base_addr));
}
/* --------------------------------------------------------------------- */
static unsigned char read_codec(struct net_device *dev, unsigned char idx)
{
int timeout = 900000;
/* wait until codec ready */
while (timeout > 0 && inb(WSS_CODEC_IA(dev->base_addr)) & 0x80)
timeout--;
outb(idx & 0x1f, WSS_CODEC_IA(dev->base_addr));
return inb(WSS_CODEC_ID(dev->base_addr));
}
/* --------------------------------------------------------------------- */
extern void inline wss_ack_int(struct net_device *dev)
{
outb(0, WSS_CODEC_STATUS(dev->base_addr));
}
/* --------------------------------------------------------------------- */
static int wss_srate_tab[16] = {
8000, 5510, 16000, 11025, 27420, 18900, 32000, 22050,
-1, 37800, -1, 44100, 48000, 33075, 9600, 6620
};
static int wss_srate_index(int srate)
{
int i;
for (i = 0; i < (sizeof(wss_srate_tab)/sizeof(wss_srate_tab[0])); i++)
if (srate == wss_srate_tab[i] && wss_srate_tab[i] > 0)
return i;
return -1;
}
/* --------------------------------------------------------------------- */
static int wss_set_codec_fmt(struct net_device *dev, struct sm_state *sm, unsigned char fmt,
unsigned char fmt2, char fdx, char fullcalib)
{
unsigned long time;
unsigned long flags;
save_flags(flags);
cli();
/* Clock and data format register */
write_codec(dev, 0x48, fmt);
if (SCSTATE->crystal) {
write_codec(dev, 0x5c, fmt2 & 0xf0);
/* MCE and interface config reg */
write_codec(dev, 0x49, (fdx ? 0 : 0x4) | (fullcalib ? 0x18 : 0));
} else
/* MCE and interface config reg */
write_codec(dev, 0x49, fdx ? 0x8 : 0xc);
outb(0xb, WSS_CODEC_IA(dev->base_addr)); /* leave MCE */
if (SCSTATE->crystal && !fullcalib) {
restore_flags(flags);
return 0;
}
/*
* wait for ACI start
*/
time = 1000;
while (!(read_codec(dev, 0x0b) & 0x20))
if (!(--time)) {
printk(KERN_WARNING "%s: ad1848 auto calibration timed out (1)\n",
sm_drvname);
restore_flags(flags);
return -1;
}
/*
* wait for ACI end
*/
sti();
time = jiffies + HZ/4;
while ((read_codec(dev, 0x0b) & 0x20) && ((signed)(jiffies - time) < 0));
restore_flags(flags);
if ((signed)(jiffies - time) >= 0) {
printk(KERN_WARNING "%s: ad1848 auto calibration timed out (2)\n",
sm_drvname);
return -1;
}
return 0;
}
/* --------------------------------------------------------------------- */
static int wss_init_codec(struct net_device *dev, struct sm_state *sm, char fdx,
unsigned char src_l, unsigned char src_r,
int igain_l, int igain_r,
int ogain_l, int ogain_r)
{
unsigned char tmp, reg0, reg1, reg6, reg7;
static const signed char irqtab[16] =
{ -1, -1, 0x10, -1, -1, -1, -1, 0x08, -1, 0x10, 0x18, 0x20, -1, -1,
-1, -1 };
static const signed char dmatab[4] = { 1, 2, -1, 3 };
tmp = inb(WSS_STATUS(dev->base_addr));
if ((tmp & 0x3f) != 0x04 && (tmp & 0x3f) != 0x00 &&
(tmp & 0x3f) != 0x0f) {
printk(KERN_WARNING "sm: WSS card id register not found, "
"address 0x%lx, ID register 0x%02x\n",
dev->base_addr, (int)tmp);
/* return -1; */
SCSTATE->revwss = 0;
} else {
if ((tmp & 0x80) && ((dev->dma == 0) ||
((dev->irq >= 8) && (dev->irq != 9)))) {
printk(KERN_ERR "%s: WSS: DMA0 and/or IRQ8..IRQ15 "
"(except IRQ9) cannot be used on an 8bit "
"card\n", sm_drvname);
return -1;
}
if (dev->irq > 15 || irqtab[dev->irq] == -1) {
printk(KERN_ERR "%s: WSS: invalid interrupt %d\n",
sm_drvname, (int)dev->irq);
return -1;
}
if (dev->dma > 3 || dmatab[dev->dma] == -1) {
printk(KERN_ERR "%s: WSS: invalid dma channel %d\n",
sm_drvname, (int)dev->dma);
return -1;
}
tmp = irqtab[dev->irq] | dmatab[dev->dma];
/* irq probe */
outb((tmp & 0x38) | 0x40, WSS_CONFIG(dev->base_addr));
if (!(inb(WSS_STATUS(dev->base_addr)) & 0x40)) {
outb(0, WSS_CONFIG(dev->base_addr));
printk(KERN_ERR "%s: WSS: IRQ%d is not free!\n",
sm_drvname, dev->irq);
}
outb(tmp, WSS_CONFIG(dev->base_addr));
SCSTATE->revwss = inb(WSS_STATUS(dev->base_addr)) & 0x3f;
}
/*
* initialize the codec
*/
if (igain_l < 0)
igain_l = 0;
if (igain_r < 0)
igain_r = 0;
if (ogain_l > 0)
ogain_l = 0;
if (ogain_r > 0)
ogain_r = 0;
reg0 = (src_l << 6) & 0xc0;
reg1 = (src_r << 6) & 0xc0;
if (reg0 == 0x80 && igain_l >= 20) {
reg0 |= 0x20;
igain_l -= 20;
}
if (reg1 == 0x80 && igain_r >= 20) {
reg1 |= 0x20;
igain_r -= 20;
}
if (igain_l > 23)
igain_l = 23;
if (igain_r > 23)
igain_r = 23;
reg0 |= igain_l * 2 / 3;
reg1 |= igain_r * 2 / 3;
reg6 = (ogain_l < -95) ? 0x80 : (ogain_l * (-2) / 3);
reg7 = (ogain_r < -95) ? 0x80 : (ogain_r * (-2) / 3);
write_codec(dev, 9, 0);
write_codec(dev, 0, 0x45);
if (read_codec(dev, 0) != 0x45)
goto codec_err;
write_codec(dev, 0, 0xaa);
if (read_codec(dev, 0) != 0xaa)
goto codec_err;
write_codec(dev, 12, 0x40); /* enable MODE2 */
write_codec(dev, 16, 0);
write_codec(dev, 0, 0x45);
SCSTATE->crystal = (read_codec(dev, 16) != 0x45);
write_codec(dev, 0, 0xaa);
SCSTATE->crystal &= (read_codec(dev, 16) != 0xaa);
if (SCSTATE->crystal) {
SCSTATE->revcid = read_codec(dev, 0x19);
SCSTATE->revv = (SCSTATE->revcid >> 5) & 7;
SCSTATE->revcid &= 7;
write_codec(dev, 0x10, 0x80); /* maximum output level */
write_codec(dev, 0x11, 0x02); /* xtal enable and no HPF */
write_codec(dev, 0x12, 0x80); /* left line input control */
write_codec(dev, 0x13, 0x80); /* right line input control */
write_codec(dev, 0x16, 0); /* disable alternative freq sel */
write_codec(dev, 0x1a, 0xe0); /* mono IO disable */
write_codec(dev, 0x1b, 0x00); /* left out no att */
write_codec(dev, 0x1d, 0x00); /* right out no att */
}
if (wss_set_codec_fmt(dev, sm, SCSTATE->fmt[0], SCSTATE->fmt[0], fdx, 1))
goto codec_err;
write_codec(dev, 0, reg0); /* left input control */
write_codec(dev, 1, reg1); /* right input control */
write_codec(dev, 2, 0x80); /* left aux#1 input control */
write_codec(dev, 3, 0x80); /* right aux#1 input control */
write_codec(dev, 4, 0x80); /* left aux#2 input control */
write_codec(dev, 5, 0x80); /* right aux#2 input control */
write_codec(dev, 6, reg6); /* left dac control */
write_codec(dev, 7, reg7); /* right dac control */
write_codec(dev, 0xa, 0x2); /* pin control register */
write_codec(dev, 0xd, 0x0); /* digital mix control */
SCSTATE->revid = read_codec(dev, 0xc) & 0xf;
/*
* print revisions
*/
if (SCSTATE->crystal)
printk(KERN_INFO "%s: Crystal CODEC ID %d, Chip revision %d, "
" Chip ID %d\n", sm_drvname, (int)SCSTATE->revid,
(int)SCSTATE->revv, (int)SCSTATE->revcid);
else
printk(KERN_INFO "%s: WSS revision %d, CODEC revision %d\n",
sm_drvname, (int)SCSTATE->revwss,
(int)SCSTATE->revid);
return 0;
codec_err:
outb(0, WSS_CONFIG(dev->base_addr));
printk(KERN_ERR "%s: no WSS soundcard found at address 0x%lx\n",
sm_drvname, dev->base_addr);
return -1;
}
/* --------------------------------------------------------------------- */
static void setup_dma_wss(struct net_device *dev, struct sm_state *sm, int send)
{
unsigned long flags;
static const unsigned char codecmode[2] = { 0x0e, 0x0d };
unsigned char oldcodecmode;
long abrt;
unsigned char fmt;
unsigned int numsamps;
send = !!send;
fmt = SCSTATE->fmt[send];
save_flags(flags);
cli();
/*
* perform the final DMA sequence to disable the codec request
*/
oldcodecmode = read_codec(dev, 9);
write_codec(dev, 9, 0xc); /* disable codec */
wss_ack_int(dev);
if (read_codec(dev, 11) & 0x10) {
dma_setup(sm, oldcodecmode & 1, dev->dma);
abrt = 0;
while ((read_codec(dev, 11) & 0x10) || ((++abrt) >= 0x10000));
}
#ifdef CS423X_HOTFIX
if (read_codec(dev, 0x8) != fmt || SCSTATE->crystal)
wss_set_codec_fmt(dev, sm, fmt, fmt, 0, 0);
#else /* CS423X_HOTFIX */
if (read_codec(dev, 0x8) != fmt)
wss_set_codec_fmt(dev, sm, fmt, fmt, 0, 0);
#endif /* CS423X_HOTFIX */
numsamps = dma_setup(sm, send, dev->dma) - 1;
write_codec(dev, 15, numsamps & 0xff);
write_codec(dev, 14, numsamps >> 8);
write_codec(dev, 9, codecmode[send]);
restore_flags(flags);
}
/* --------------------------------------------------------------------- */
static void wss_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct sm_state *sm = (struct sm_state *)dev->priv;
unsigned int curfrag;
unsigned int nums;
if (!dev || !sm || !sm->mode_rx || !sm->mode_tx ||
sm->hdrv.magic != HDLCDRV_MAGIC)
return;
cli();
wss_ack_int(dev);
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
nums = dma_ptr(sm, sm->dma.ptt_cnt > 0, dev->dma, &curfrag) - 1;
write_codec(dev, 15, nums & 0xff);
write_codec(dev, 14, nums >> 8);
enable_dma(dev->dma);
sm_int_freq(sm);
sti();
if (sm->dma.ptt_cnt <= 0) {
dma_receive(sm, curfrag);
hdlcdrv_arbitrate(dev, &sm->hdrv);
if (hdlcdrv_ptt(&sm->hdrv)) {
/* starting to transmit */
disable_dma(dev->dma);
hdlcdrv_transmitter(dev, &sm->hdrv); /* prefill HDLC buffer */
dma_start_transmit(sm);
setup_dma_wss(dev, sm, 1);
dma_transmit(sm);
}
} else if (dma_end_transmit(sm, curfrag)) {
/* stopping transmission */
disable_dma(dev->dma);
dma_init_receive(sm);
setup_dma_wss(dev, sm, 0);
} else
dma_transmit(sm);
sm_output_status(sm);
hdlcdrv_transmitter(dev, &sm->hdrv);
hdlcdrv_receiver(dev, &sm->hdrv);
}
/* --------------------------------------------------------------------- */
static int wss_open(struct net_device *dev, struct sm_state *sm)
{
unsigned int dmasz, u;
if (sizeof(sm->m) < sizeof(struct sc_state_wss)) {
printk(KERN_ERR "sm wss: wss state too big: %d > %d\n",
sizeof(struct sc_state_wss), sizeof(sm->m));
return -ENODEV;
}
if (!dev || !sm || !sm->mode_rx || !sm->mode_tx)
return -ENXIO;
if (dev->base_addr <= 0 || dev->base_addr > 0x1000-WSS_EXTENT ||
dev->irq < 2 || dev->irq > 15 || dev->dma > 3)
return -ENXIO;
if (check_region(dev->base_addr, WSS_EXTENT))
return -EACCES;
/*
* check if a card is available
*/
if (wss_init_codec(dev, sm, 0, 1, 1, 0, 0, -45, -45))
return -ENODEV;
/*
* initialize some variables
*/
dma_init_receive(sm);
dmasz = (NUM_FRAGMENTS + 1) * sm->dma.ifragsz;
u = NUM_FRAGMENTS * sm->dma.ofragsz;
if (u > dmasz)
dmasz = u;
if (!(sm->dma.ibuf = sm->dma.obuf = kmalloc(dmasz, GFP_KERNEL | GFP_DMA)))
return -ENOMEM;
dma_init_transmit(sm);
dma_init_receive(sm);
memset(&sm->m, 0, sizeof(sm->m));
memset(&sm->d, 0, sizeof(sm->d));
if (sm->mode_tx->init)
sm->mode_tx->init(sm);
if (sm->mode_rx->init)
sm->mode_rx->init(sm);
if (request_dma(dev->dma, sm->hwdrv->hw_name)) {
kfree(sm->dma.obuf);
return -EBUSY;
}
if (request_irq(dev->irq, wss_interrupt, SA_INTERRUPT,
sm->hwdrv->hw_name, dev)) {
free_dma(dev->dma);
kfree(sm->dma.obuf);
return -EBUSY;
}
request_region(dev->base_addr, WSS_EXTENT, sm->hwdrv->hw_name);
setup_dma_wss(dev, sm, 0);
return 0;
}
/* --------------------------------------------------------------------- */
static int wss_close(struct net_device *dev, struct sm_state *sm)
{
if (!dev || !sm)
return -EINVAL;
/*
* disable interrupts
*/
disable_dma(dev->dma);
write_codec(dev, 9, 0xc); /* disable codec */
free_irq(dev->irq, dev);
free_dma(dev->dma);
release_region(dev->base_addr, WSS_EXTENT);
kfree(sm->dma.obuf);
return 0;
}
/* --------------------------------------------------------------------- */
static int wss_sethw(struct net_device *dev, struct sm_state *sm, char *mode)
{
char *cp = strchr(mode, '.');
const struct modem_tx_info **mtp = sm_modem_tx_table;
const struct modem_rx_info **mrp;
int i, j;
if (!strcmp(mode, "off")) {
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return 0;
}
if (cp)
*cp++ = '\0';
else
cp = mode;
for (; *mtp; mtp++) {
if ((*mtp)->loc_storage > sizeof(sm->m)) {
printk(KERN_ERR "%s: insufficient storage for modulator %s (%d)\n",
sm_drvname, (*mtp)->name, (*mtp)->loc_storage);
continue;
}
if (!(*mtp)->name || strcmp((*mtp)->name, mode))
continue;
if ((i = wss_srate_index((*mtp)->srate)) < 0)
continue;
for (mrp = sm_modem_rx_table; *mrp; mrp++) {
if ((*mrp)->loc_storage > sizeof(sm->d)) {
printk(KERN_ERR "%s: insufficient storage for demodulator %s (%d)\n",
sm_drvname, (*mrp)->name, (*mrp)->loc_storage);
continue;
}
if ((*mrp)->name && !strcmp((*mrp)->name, cp) &&
((j = wss_srate_index((*mrp)->srate)) >= 0)) {
sm->mode_tx = *mtp;
sm->mode_rx = *mrp;
SCSTATE->fmt[0] = j;
SCSTATE->fmt[1] = i;
sm->dma.ifragsz = (sm->mode_rx->srate + 50)/100;
sm->dma.ofragsz = (sm->mode_tx->srate + 50)/100;
if (sm->dma.ifragsz < sm->mode_rx->overlap)
sm->dma.ifragsz = sm->mode_rx->overlap;
/* prefer same data format if possible to minimize switching times */
sm->dma.i16bit = sm->dma.o16bit = 2;
if (sm->mode_rx->srate == sm->mode_tx->srate) {
if (sm->mode_rx->demodulator_s16 && sm->mode_tx->modulator_s16)
sm->dma.i16bit = sm->dma.o16bit = 1;
else if (sm->mode_rx->demodulator_u8 && sm->mode_tx->modulator_u8)
sm->dma.i16bit = sm->dma.o16bit = 0;
}
if (sm->dma.i16bit == 2) {
if (sm->mode_rx->demodulator_s16)
sm->dma.i16bit = 1;
else if (sm->mode_rx->demodulator_u8)
sm->dma.i16bit = 0;
}
if (sm->dma.o16bit == 2) {
if (sm->mode_tx->modulator_s16)
sm->dma.o16bit = 1;
else if (sm->mode_tx->modulator_u8)
sm->dma.o16bit = 0;
}
if (sm->dma.i16bit == 2 || sm->dma.o16bit == 2) {
printk(KERN_INFO "%s: mode %s or %s unusable\n", sm_drvname,
sm->mode_rx->name, sm->mode_tx->name);
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return -EINVAL;
}
#ifdef __BIG_ENDIAN
/* big endian 16bit only works on crystal cards... */
if (sm->dma.i16bit) {
SCSTATE->fmt[0] |= 0xc0;
sm->dma.ifragsz <<= 1;
}
if (sm->dma.o16bit) {
SCSTATE->fmt[1] |= 0xc0;
sm->dma.ofragsz <<= 1;
}
#else /* __BIG_ENDIAN */
if (sm->dma.i16bit) {
SCSTATE->fmt[0] |= 0x40;
sm->dma.ifragsz <<= 1;
}
if (sm->dma.o16bit) {
SCSTATE->fmt[1] |= 0x40;
sm->dma.ofragsz <<= 1;
}
#endif /* __BIG_ENDIAN */
return 0;
}
}
}
return -EINVAL;
}
/* --------------------------------------------------------------------- */
static int wss_ioctl(struct net_device *dev, struct sm_state *sm, struct ifreq *ifr,
struct hdlcdrv_ioctl *hi, int cmd)
{
struct sm_ioctl bi;
int i;
if (cmd != SIOCDEVPRIVATE)
return -ENOIOCTLCMD;
if (hi->cmd == HDLCDRVCTL_MODEMPARMASK)
return HDLCDRV_PARMASK_IOBASE | HDLCDRV_PARMASK_IRQ |
HDLCDRV_PARMASK_DMA | HDLCDRV_PARMASK_SERIOBASE |
HDLCDRV_PARMASK_PARIOBASE | HDLCDRV_PARMASK_MIDIIOBASE;
if (copy_from_user(&bi, ifr->ifr_data, sizeof(bi)))
return -EFAULT;
switch (bi.cmd) {
default:
return -ENOIOCTLCMD;
case SMCTL_GETMIXER:
i = 0;
bi.data.mix.sample_rate = sm->mode_rx->srate;
bi.data.mix.bit_rate = sm->hdrv.par.bitrate;
bi.data.mix.mixer_type = SCSTATE->crystal ?
SM_MIXER_CRYSTAL : SM_MIXER_AD1848;
if (((SCSTATE->crystal ? 0x2c0c20fflu: 0x20fflu)
>> bi.data.mix.reg) & 1) {
bi.data.mix.data = read_codec(dev, bi.data.mix.reg);
i = 1;
}
if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
return -EFAULT;
return i;
case SMCTL_SETMIXER:
if (!capable(CAP_SYS_RAWIO))
return -EACCES;
if ((bi.data.mix.mixer_type != SM_MIXER_CRYSTAL ||
!SCSTATE->crystal) &&
(bi.data.mix.mixer_type != SM_MIXER_AD1848 ||
bi.data.mix.reg >= 0x10))
return -EINVAL;
if (!((0x2c0c20fflu >> bi.data.mix.reg) & 1))
return -EACCES;
write_codec(dev, bi.data.mix.reg, bi.data.mix.data);
return 0;
}
if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
return -EFAULT;
return 0;
}
/* --------------------------------------------------------------------- */
const struct hardware_info sm_hw_wss = {
"wss", sizeof(struct sc_state_wss),
wss_open, wss_close, wss_ioctl, wss_sethw
};
/* --------------------------------------------------------------------- */
static void setup_fdx_dma_wss(struct net_device *dev, struct sm_state *sm)
{
unsigned long flags;
unsigned char oldcodecmode, codecdma;
long abrt;
unsigned int osamps, isamps;
save_flags(flags);
cli();
/*
* perform the final DMA sequence to disable the codec request
*/
oldcodecmode = read_codec(dev, 9);
write_codec(dev, 9, 0); /* disable codec DMA */
wss_ack_int(dev);
if ((codecdma = read_codec(dev, 11)) & 0x10) {
dma_setup(sm, 1, dev->dma);
dma_setup(sm, 0, sm->hdrv.ptt_out.dma2);
abrt = 0;
while (((codecdma = read_codec(dev, 11)) & 0x10) || ((++abrt) >= 0x10000));
}
wss_set_codec_fmt(dev, sm, SCSTATE->fmt[1], SCSTATE->fmt[0], 1, 1);
osamps = dma_setup(sm, 1, dev->dma) - 1;
isamps = dma_setup(sm, 0, sm->hdrv.ptt_out.dma2) - 1;
write_codec(dev, 15, osamps & 0xff);
write_codec(dev, 14, osamps >> 8);
if (SCSTATE->crystal) {
write_codec(dev, 31, isamps & 0xff);
write_codec(dev, 30, isamps >> 8);
}
write_codec(dev, 9, 3);
restore_flags(flags);
}
/* --------------------------------------------------------------------- */
static void wssfdx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct sm_state *sm = (struct sm_state *)dev->priv;
unsigned long flags;
unsigned char cry_int_src;
unsigned icfrag, ocfrag, isamps, osamps;
if (!dev || !sm || !sm->mode_rx || !sm->mode_tx ||
sm->hdrv.magic != HDLCDRV_MAGIC)
return;
save_flags(flags);
cli();
if (SCSTATE->crystal) {
/* Crystal has an essentially different interrupt handler! */
cry_int_src = read_codec(dev, 0x18);
wss_ack_int(dev);
if (cry_int_src & 0x10) { /* playback interrupt */
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
osamps = dma_ptr(sm, 1, dev->dma, &ocfrag)-1;
write_codec(dev, 15, osamps & 0xff);
write_codec(dev, 14, osamps >> 8);
enable_dma(dev->dma);
}
if (cry_int_src & 0x20) { /* capture interrupt */
disable_dma(sm->hdrv.ptt_out.dma2);
clear_dma_ff(sm->hdrv.ptt_out.dma2);
isamps = dma_ptr(sm, 0, sm->hdrv.ptt_out.dma2, &icfrag)-1;
write_codec(dev, 31, isamps & 0xff);
write_codec(dev, 30, isamps >> 8);
enable_dma(sm->hdrv.ptt_out.dma2);
}
restore_flags(flags);
sm_int_freq(sm);
sti();
if (cry_int_src & 0x10) {
if (dma_end_transmit(sm, ocfrag))
dma_clear_transmit(sm);
dma_transmit(sm);
}
if (cry_int_src & 0x20) {
dma_receive(sm, icfrag);
hdlcdrv_arbitrate(dev, &sm->hdrv);
}
sm_output_status(sm);
hdlcdrv_transmitter(dev, &sm->hdrv);
hdlcdrv_receiver(dev, &sm->hdrv);
return;
}
wss_ack_int(dev);
disable_dma(dev->dma);
disable_dma(sm->hdrv.ptt_out.dma2);
clear_dma_ff(dev->dma);
clear_dma_ff(sm->hdrv.ptt_out.dma2);
osamps = dma_ptr(sm, 1, dev->dma, &ocfrag)-1;
isamps = dma_ptr(sm, 0, sm->hdrv.ptt_out.dma2, &icfrag)-1;
write_codec(dev, 15, osamps & 0xff);
write_codec(dev, 14, osamps >> 8);
if (SCSTATE->crystal) {
write_codec(dev, 31, isamps & 0xff);
write_codec(dev, 30, isamps >> 8);
}
enable_dma(dev->dma);
enable_dma(sm->hdrv.ptt_out.dma2);
restore_flags(flags);
sm_int_freq(sm);
sti();
if (dma_end_transmit(sm, ocfrag))
dma_clear_transmit(sm);
dma_transmit(sm);
dma_receive(sm, icfrag);
hdlcdrv_arbitrate(dev, &sm->hdrv);
sm_output_status(sm);
hdlcdrv_transmitter(dev, &sm->hdrv);
hdlcdrv_receiver(dev, &sm->hdrv);
}
/* --------------------------------------------------------------------- */
static int wssfdx_open(struct net_device *dev, struct sm_state *sm)
{
if (!dev || !sm || !sm->mode_rx || !sm->mode_tx)
return -ENXIO;
if (dev->base_addr <= 0 || dev->base_addr > 0x1000-WSS_EXTENT ||
dev->irq < 2 || dev->irq > 15 || dev->dma > 3)
return -ENXIO;
if (check_region(dev->base_addr, WSS_EXTENT))
return -EACCES;
/*
* check if a card is available
*/
if (wss_init_codec(dev, sm, 1, 1, 1, 0, 0, -45, -45))
return -ENODEV;
/*
* initialize some variables
*/
if (!(sm->dma.ibuf = kmalloc(sm->dma.ifragsz * (NUM_FRAGMENTS+1), GFP_KERNEL | GFP_DMA)))
return -ENOMEM;
if (!(sm->dma.obuf = kmalloc(sm->dma.ofragsz * NUM_FRAGMENTS, GFP_KERNEL | GFP_DMA))) {
kfree(sm->dma.ibuf);
return -ENOMEM;
}
dma_init_transmit(sm);
dma_init_receive(sm);
memset(&sm->m, 0, sizeof(sm->m));
memset(&sm->d, 0, sizeof(sm->d));
if (sm->mode_tx->init)
sm->mode_tx->init(sm);
if (sm->mode_rx->init)
sm->mode_rx->init(sm);
if (request_dma(dev->dma, sm->hwdrv->hw_name)) {
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
return -EBUSY;
}
if (request_dma(sm->hdrv.ptt_out.dma2, sm->hwdrv->hw_name)) {
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
free_dma(dev->dma);
return -EBUSY;
}
if (request_irq(dev->irq, wssfdx_interrupt, SA_INTERRUPT,
sm->hwdrv->hw_name, dev)) {
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
free_dma(dev->dma);
free_dma(sm->hdrv.ptt_out.dma2);
return -EBUSY;
}
request_region(dev->base_addr, WSS_EXTENT, sm->hwdrv->hw_name);
setup_fdx_dma_wss(dev, sm);
return 0;
}
/* --------------------------------------------------------------------- */
static int wssfdx_close(struct net_device *dev, struct sm_state *sm)
{
if (!dev || !sm)
return -EINVAL;
/*
* disable interrupts
*/
disable_dma(dev->dma);
disable_dma(sm->hdrv.ptt_out.dma2);
write_codec(dev, 9, 0xc); /* disable codec */
free_irq(dev->irq, dev);
free_dma(dev->dma);
free_dma(sm->hdrv.ptt_out.dma2);
release_region(dev->base_addr, WSS_EXTENT);
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
return 0;
}
/* --------------------------------------------------------------------- */
static int wssfdx_sethw(struct net_device *dev, struct sm_state *sm, char *mode)
{
char *cp = strchr(mode, '.');
const struct modem_tx_info **mtp = sm_modem_tx_table;
const struct modem_rx_info **mrp;
int i;
if (!strcmp(mode, "off")) {
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return 0;
}
if (cp)
*cp++ = '\0';
else
cp = mode;
for (; *mtp; mtp++) {
if ((*mtp)->loc_storage > sizeof(sm->m)) {
printk(KERN_ERR "%s: insufficient storage for modulator %s (%d)\n",
sm_drvname, (*mtp)->name, (*mtp)->loc_storage);
continue;
}
if (!(*mtp)->name || strcmp((*mtp)->name, mode))
continue;
if ((i = wss_srate_index((*mtp)->srate)) < 0)
continue;
for (mrp = sm_modem_rx_table; *mrp; mrp++) {
if ((*mrp)->loc_storage > sizeof(sm->d)) {
printk(KERN_ERR "%s: insufficient storage for demodulator %s (%d)\n",
sm_drvname, (*mrp)->name, (*mrp)->loc_storage);
continue;
}
if ((*mrp)->name && !strcmp((*mrp)->name, cp) &&
(*mtp)->srate == (*mrp)->srate) {
sm->mode_tx = *mtp;
sm->mode_rx = *mrp;
SCSTATE->fmt[0] = SCSTATE->fmt[1] = i;
sm->dma.ifragsz = sm->dma.ofragsz = (sm->mode_rx->srate + 50)/100;
if (sm->dma.ifragsz < sm->mode_rx->overlap)
sm->dma.ifragsz = sm->mode_rx->overlap;
sm->dma.i16bit = sm->dma.o16bit = 2;
if (sm->mode_rx->demodulator_s16) {
sm->dma.i16bit = 1;
sm->dma.ifragsz <<= 1;
#ifdef __BIG_ENDIAN /* big endian 16bit only works on crystal cards... */
SCSTATE->fmt[0] |= 0xc0;
#else /* __BIG_ENDIAN */
SCSTATE->fmt[0] |= 0x40;
#endif /* __BIG_ENDIAN */
} else if (sm->mode_rx->demodulator_u8)
sm->dma.i16bit = 0;
if (sm->mode_tx->modulator_s16) {
sm->dma.o16bit = 1;
sm->dma.ofragsz <<= 1;
#ifdef __BIG_ENDIAN /* big endian 16bit only works on crystal cards... */
SCSTATE->fmt[1] |= 0xc0;
#else /* __BIG_ENDIAN */
SCSTATE->fmt[1] |= 0x40;
#endif /* __BIG_ENDIAN */
} else if (sm->mode_tx->modulator_u8)
sm->dma.o16bit = 0;
if (sm->dma.i16bit == 2 || sm->dma.o16bit == 2) {
printk(KERN_INFO "%s: mode %s or %s unusable\n", sm_drvname,
sm->mode_rx->name, sm->mode_tx->name);
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return -EINVAL;
}
return 0;
}
}
}
return -EINVAL;
}
/* --------------------------------------------------------------------- */
static int wssfdx_ioctl(struct net_device *dev, struct sm_state *sm, struct ifreq *ifr,
struct hdlcdrv_ioctl *hi, int cmd)
{
if (cmd != SIOCDEVPRIVATE)
return -ENOIOCTLCMD;
if (hi->cmd == HDLCDRVCTL_MODEMPARMASK)
return HDLCDRV_PARMASK_IOBASE | HDLCDRV_PARMASK_IRQ |
HDLCDRV_PARMASK_DMA | HDLCDRV_PARMASK_DMA2 |
HDLCDRV_PARMASK_SERIOBASE | HDLCDRV_PARMASK_PARIOBASE |
HDLCDRV_PARMASK_MIDIIOBASE;
return wss_ioctl(dev, sm, ifr, hi, cmd);
}
/* --------------------------------------------------------------------- */
const struct hardware_info sm_hw_wssfdx = {
"wssfdx", sizeof(struct sc_state_wss),
wssfdx_open, wssfdx_close, wssfdx_ioctl, wssfdx_sethw
};
/* --------------------------------------------------------------------- */
#undef SCSTATE