/*
* sm_sbc.c -- soundcard radio modem driver soundblaster hardware driver
*
* Copyright (C) 1996 Thomas Sailer (sailer@ife.ee.ethz.ch)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Please note that the GPL allows you to use the driver, NOT the radio.
* In order to use the radio, you need a license from the communications
* authority of your country.
*
*/
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/ioport.h>
#include <linux/soundmodem.h>
#include <linux/delay.h>
#include "sm.h"
#include "smdma.h"
/* --------------------------------------------------------------------- */
/*
* currently this module is supposed to support both module styles, i.e.
* the old one present up to about 2.1.9, and the new one functioning
* starting with 2.1.21. The reason is I have a kit allowing to compile
* this module also under 2.0.x which was requested by several people.
* This will go in 2.2
*/
#include <linux/version.h>
#include <asm/uaccess.h>
/* --------------------------------------------------------------------- */
struct sc_state_sbc {
unsigned char revhi, revlo;
unsigned char fmt[2];
unsigned int sr[2];
};
#define SCSTATE ((struct sc_state_sbc *)(&sm->hw))
/* --------------------------------------------------------------------- */
/*
* the sbc converter's registers
*/
#define DSP_RESET(iobase) (iobase+0x6)
#define DSP_READ_DATA(iobase) (iobase+0xa)
#define DSP_WRITE_DATA(iobase) (iobase+0xc)
#define DSP_WRITE_STATUS(iobase) (iobase+0xc)
#define DSP_DATA_AVAIL(iobase) (iobase+0xe)
#define DSP_MIXER_ADDR(iobase) (iobase+0x4)
#define DSP_MIXER_DATA(iobase) (iobase+0x5)
#define DSP_INTACK_16BIT(iobase) (iobase+0xf)
#define SBC_EXTENT 16
/* --------------------------------------------------------------------- */
/*
* SBC commands
*/
#define SBC_OUTPUT 0x14
#define SBC_INPUT 0x24
#define SBC_BLOCKSIZE 0x48
#define SBC_HI_OUTPUT 0x91
#define SBC_HI_INPUT 0x99
#define SBC_LO_OUTPUT_AUTOINIT 0x1c
#define SBC_LO_INPUT_AUTOINIT 0x2c
#define SBC_HI_OUTPUT_AUTOINIT 0x90
#define SBC_HI_INPUT_AUTOINIT 0x98
#define SBC_IMMED_INT 0xf2
#define SBC_GET_REVISION 0xe1
#define ESS_GET_REVISION 0xe7
#define SBC_SPEAKER_ON 0xd1
#define SBC_SPEAKER_OFF 0xd3
#define SBC_DMA_ON 0xd0
#define SBC_DMA_OFF 0xd4
#define SBC_SAMPLE_RATE 0x40
#define SBC_SAMPLE_RATE_OUT 0x41
#define SBC_SAMPLE_RATE_IN 0x42
#define SBC_MONO_8BIT 0xa0
#define SBC_MONO_16BIT 0xa4
#define SBC_STEREO_8BIT 0xa8
#define SBC_STEREO_16BIT 0xac
#define SBC4_OUT8_AI 0xc6
#define SBC4_IN8_AI 0xce
#define SBC4_MODE_UNS_MONO 0x00
#define SBC4_MODE_SIGN_MONO 0x10
#define SBC4_OUT16_AI 0xb6
#define SBC4_IN16_AI 0xbe
/* --------------------------------------------------------------------- */
static int inline reset_dsp(struct net_device *dev)
{
int i;
outb(1, DSP_RESET(dev->base_addr));
udelay(300);
outb(0, DSP_RESET(dev->base_addr));
for (i = 0; i < 0xffff; i++)
if (inb(DSP_DATA_AVAIL(dev->base_addr)) & 0x80)
if (inb(DSP_READ_DATA(dev->base_addr)) == 0xaa)
return 1;
return 0;
}
/* --------------------------------------------------------------------- */
static void inline write_dsp(struct net_device *dev, unsigned char data)
{
int i;
for (i = 0; i < 0xffff; i++)
if (!(inb(DSP_WRITE_STATUS(dev->base_addr)) & 0x80)) {
outb(data, DSP_WRITE_DATA(dev->base_addr));
return;
}
}
/* --------------------------------------------------------------------- */
static int inline read_dsp(struct net_device *dev, unsigned char *data)
{
int i;
if (!data)
return 0;
for (i = 0; i < 0xffff; i++)
if (inb(DSP_DATA_AVAIL(dev->base_addr)) & 0x80) {
*data = inb(DSP_READ_DATA(dev->base_addr));
return 1;
}
return 0;
}
/* --------------------------------------------------------------------- */
static int config_resources(struct net_device *dev, struct sm_state *sm, int fdx)
{
unsigned char irqreg = 0, dmareg = 0, realirq, realdma;
unsigned long flags;
switch (dev->irq) {
case 2:
case 9:
irqreg |= 0x01;
break;
case 5:
irqreg |= 0x02;
break;
case 7:
irqreg |= 0x04;
break;
case 10:
irqreg |= 0x08;
break;
default:
return -ENODEV;
}
switch (dev->dma) {
case 0:
dmareg |= 0x01;
break;
case 1:
dmareg |= 0x02;
break;
case 3:
dmareg |= 0x08;
break;
default:
return -ENODEV;
}
if (fdx) {
switch (sm->hdrv.ptt_out.dma2) {
case 5:
dmareg |= 0x20;
break;
case 6:
dmareg |= 0x40;
break;
case 7:
dmareg |= 0x80;
break;
default:
return -ENODEV;
}
}
save_flags(flags);
cli();
outb(0x80, DSP_MIXER_ADDR(dev->base_addr));
outb(irqreg, DSP_MIXER_DATA(dev->base_addr));
realirq = inb(DSP_MIXER_DATA(dev->base_addr));
outb(0x81, DSP_MIXER_ADDR(dev->base_addr));
outb(dmareg, DSP_MIXER_DATA(dev->base_addr));
realdma = inb(DSP_MIXER_DATA(dev->base_addr));
restore_flags(flags);
if ((~realirq) & irqreg || (~realdma) & dmareg) {
printk(KERN_ERR "%s: sbc resource registers cannot be set; PnP device "
"and IRQ/DMA specified wrongly?\n", sm_drvname);
return -EINVAL;
}
return 0;
}
/* --------------------------------------------------------------------- */
static void inline sbc_int_ack_8bit(struct net_device *dev)
{
inb(DSP_DATA_AVAIL(dev->base_addr));
}
/* --------------------------------------------------------------------- */
static void inline sbc_int_ack_16bit(struct net_device *dev)
{
inb(DSP_INTACK_16BIT(dev->base_addr));
}
/* --------------------------------------------------------------------- */
static void setup_dma_dsp(struct net_device *dev, struct sm_state *sm, int send)
{
unsigned long flags;
static const unsigned char sbcmode[2][2] = {
{ SBC_LO_INPUT_AUTOINIT, SBC_LO_OUTPUT_AUTOINIT },
{ SBC_HI_INPUT_AUTOINIT, SBC_HI_OUTPUT_AUTOINIT }
};
static const unsigned char sbc4mode[2] = { SBC4_IN8_AI, SBC4_OUT8_AI };
static const unsigned char sbcskr[2] = { SBC_SPEAKER_OFF, SBC_SPEAKER_ON };
unsigned int nsamps;
send = !!send;
if (!reset_dsp(dev)) {
printk(KERN_ERR "%s: sbc: cannot reset sb dsp\n", sm_drvname);
return;
}
save_flags(flags);
cli();
sbc_int_ack_8bit(dev);
write_dsp(dev, SBC_SAMPLE_RATE); /* set sampling rate */
write_dsp(dev, SCSTATE->fmt[send]);
write_dsp(dev, sbcskr[send]);
nsamps = dma_setup(sm, send, dev->dma) - 1;
sbc_int_ack_8bit(dev);
if (SCSTATE->revhi >= 4) {
write_dsp(dev, sbc4mode[send]);
write_dsp(dev, SBC4_MODE_UNS_MONO);
write_dsp(dev, nsamps & 0xff);
write_dsp(dev, nsamps >> 8);
} else {
write_dsp(dev, SBC_BLOCKSIZE);
write_dsp(dev, nsamps & 0xff);
write_dsp(dev, nsamps >> 8);
write_dsp(dev, sbcmode[SCSTATE->fmt[send] >= 180][send]);
/* hispeed mode if sample rate > 13kHz */
}
restore_flags(flags);
}
/* --------------------------------------------------------------------- */
static void sbc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct sm_state *sm = (struct sm_state *)dev->priv;
unsigned int curfrag;
if (!dev || !sm || sm->hdrv.magic != HDLCDRV_MAGIC)
return;
cli();
sbc_int_ack_8bit(dev);
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
dma_ptr(sm, sm->dma.ptt_cnt > 0, dev->dma, &curfrag);
enable_dma(dev->dma);
sm_int_freq(sm);
sti();
if (sm->dma.ptt_cnt <= 0) {
dma_receive(sm, curfrag);
hdlcdrv_arbitrate(dev, &sm->hdrv);
if (hdlcdrv_ptt(&sm->hdrv)) {
/* starting to transmit */
disable_dma(dev->dma);
hdlcdrv_transmitter(dev, &sm->hdrv); /* prefill HDLC buffer */
dma_start_transmit(sm);
setup_dma_dsp(dev, sm, 1);
dma_transmit(sm);
}
} else if (dma_end_transmit(sm, curfrag)) {
/* stopping transmission */
disable_dma(dev->dma);
sti();
dma_init_receive(sm);
setup_dma_dsp(dev, sm, 0);
} else
dma_transmit(sm);
sm_output_status(sm);
hdlcdrv_transmitter(dev, &sm->hdrv);
hdlcdrv_receiver(dev, &sm->hdrv);
}
/* --------------------------------------------------------------------- */
static int sbc_open(struct net_device *dev, struct sm_state *sm)
{
int err;
unsigned int dmasz, u;
if (sizeof(sm->m) < sizeof(struct sc_state_sbc)) {
printk(KERN_ERR "sm sbc: sbc state too big: %d > %d\n",
sizeof(struct sc_state_sbc), sizeof(sm->m));
return -ENODEV;
}
if (!dev || !sm)
return -ENXIO;
if (dev->base_addr <= 0 || dev->base_addr > 0x1000-SBC_EXTENT ||
dev->irq < 2 || dev->irq > 15 || dev->dma > 3)
return -ENXIO;
if (check_region(dev->base_addr, SBC_EXTENT))
return -EACCES;
/*
* check if a card is available
*/
if (!reset_dsp(dev)) {
printk(KERN_ERR "%s: sbc: no card at io address 0x%lx\n",
sm_drvname, dev->base_addr);
return -ENODEV;
}
write_dsp(dev, SBC_GET_REVISION);
if (!read_dsp(dev, &SCSTATE->revhi) ||
!read_dsp(dev, &SCSTATE->revlo))
return -ENODEV;
printk(KERN_INFO "%s: SoundBlaster DSP revision %d.%d\n", sm_drvname,
SCSTATE->revhi, SCSTATE->revlo);
if (SCSTATE->revhi < 2) {
printk(KERN_ERR "%s: your card is an antiquity, at least DSP "
"rev 2.00 required\n", sm_drvname);
return -ENODEV;
}
if (SCSTATE->revhi < 3 &&
(SCSTATE->fmt[0] >= 180 || SCSTATE->fmt[1] >= 180)) {
printk(KERN_ERR "%s: sbc io 0x%lx: DSP rev %d.%02d too "
"old, at least 3.00 required\n", sm_drvname,
dev->base_addr, SCSTATE->revhi, SCSTATE->revlo);
return -ENODEV;
}
if (SCSTATE->revhi >= 4 &&
(err = config_resources(dev, sm, 0))) {
printk(KERN_ERR "%s: invalid IRQ and/or DMA specified\n", sm_drvname);
return err;
}
/*
* initialize some variables
*/
dma_init_receive(sm);
dmasz = (NUM_FRAGMENTS + 1) * sm->dma.ifragsz;
u = NUM_FRAGMENTS * sm->dma.ofragsz;
if (u > dmasz)
dmasz = u;
if (!(sm->dma.ibuf = sm->dma.obuf = kmalloc(dmasz, GFP_KERNEL | GFP_DMA)))
return -ENOMEM;
dma_init_transmit(sm);
dma_init_receive(sm);
memset(&sm->m, 0, sizeof(sm->m));
memset(&sm->d, 0, sizeof(sm->d));
if (sm->mode_tx->init)
sm->mode_tx->init(sm);
if (sm->mode_rx->init)
sm->mode_rx->init(sm);
if (request_dma(dev->dma, sm->hwdrv->hw_name)) {
kfree(sm->dma.obuf);
return -EBUSY;
}
if (request_irq(dev->irq, sbc_interrupt, SA_INTERRUPT,
sm->hwdrv->hw_name, dev)) {
free_dma(dev->dma);
kfree(sm->dma.obuf);
return -EBUSY;
}
request_region(dev->base_addr, SBC_EXTENT, sm->hwdrv->hw_name);
setup_dma_dsp(dev, sm, 0);
return 0;
}
/* --------------------------------------------------------------------- */
static int sbc_close(struct net_device *dev, struct sm_state *sm)
{
if (!dev || !sm)
return -EINVAL;
/*
* disable interrupts
*/
disable_dma(dev->dma);
reset_dsp(dev);
free_irq(dev->irq, dev);
free_dma(dev->dma);
release_region(dev->base_addr, SBC_EXTENT);
kfree(sm->dma.obuf);
return 0;
}
/* --------------------------------------------------------------------- */
static int sbc_sethw(struct net_device *dev, struct sm_state *sm, char *mode)
{
char *cp = strchr(mode, '.');
const struct modem_tx_info **mtp = sm_modem_tx_table;
const struct modem_rx_info **mrp;
if (!strcmp(mode, "off")) {
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return 0;
}
if (cp)
*cp++ = '\0';
else
cp = mode;
for (; *mtp; mtp++) {
if ((*mtp)->loc_storage > sizeof(sm->m)) {
printk(KERN_ERR "%s: insufficient storage for modulator %s (%d)\n",
sm_drvname, (*mtp)->name, (*mtp)->loc_storage);
continue;
}
if (!(*mtp)->name || strcmp((*mtp)->name, mode))
continue;
if ((*mtp)->srate < 5000 || (*mtp)->srate > 44100)
continue;
if (!(*mtp)->modulator_u8)
continue;
for (mrp = sm_modem_rx_table; *mrp; mrp++) {
if ((*mrp)->loc_storage > sizeof(sm->d)) {
printk(KERN_ERR "%s: insufficient storage for demodulator %s (%d)\n",
sm_drvname, (*mrp)->name, (*mrp)->loc_storage);
continue;
}
if (!(*mrp)->demodulator_u8)
continue;
if ((*mrp)->name && !strcmp((*mrp)->name, cp) &&
(*mrp)->srate >= 5000 && (*mrp)->srate <= 44100) {
sm->mode_tx = *mtp;
sm->mode_rx = *mrp;
SCSTATE->fmt[0] = 256-((1000000L+sm->mode_rx->srate/2)/
sm->mode_rx->srate);
SCSTATE->fmt[1] = 256-((1000000L+sm->mode_tx->srate/2)/
sm->mode_tx->srate);
sm->dma.ifragsz = (sm->mode_rx->srate + 50)/100;
sm->dma.ofragsz = (sm->mode_tx->srate + 50)/100;
if (sm->dma.ifragsz < sm->mode_rx->overlap)
sm->dma.ifragsz = sm->mode_rx->overlap;
sm->dma.i16bit = sm->dma.o16bit = 0;
return 0;
}
}
}
return -EINVAL;
}
/* --------------------------------------------------------------------- */
static int sbc_ioctl(struct net_device *dev, struct sm_state *sm, struct ifreq *ifr,
struct hdlcdrv_ioctl *hi, int cmd)
{
struct sm_ioctl bi;
unsigned long flags;
int i;
if (cmd != SIOCDEVPRIVATE)
return -ENOIOCTLCMD;
if (hi->cmd == HDLCDRVCTL_MODEMPARMASK)
return HDLCDRV_PARMASK_IOBASE | HDLCDRV_PARMASK_IRQ |
HDLCDRV_PARMASK_DMA | HDLCDRV_PARMASK_SERIOBASE |
HDLCDRV_PARMASK_PARIOBASE | HDLCDRV_PARMASK_MIDIIOBASE;
if (copy_from_user(&bi, ifr->ifr_data, sizeof(bi)))
return -EFAULT;
switch (bi.cmd) {
default:
return -ENOIOCTLCMD;
case SMCTL_GETMIXER:
i = 0;
bi.data.mix.sample_rate = sm->mode_rx->srate;
bi.data.mix.bit_rate = sm->hdrv.par.bitrate;
bi.data.mix.mixer_type = SM_MIXER_INVALID;
switch (SCSTATE->revhi) {
case 2:
bi.data.mix.mixer_type = SM_MIXER_CT1335;
break;
case 3:
bi.data.mix.mixer_type = SM_MIXER_CT1345;
break;
case 4:
bi.data.mix.mixer_type = SM_MIXER_CT1745;
break;
}
if (bi.data.mix.mixer_type != SM_MIXER_INVALID &&
bi.data.mix.reg < 0x80) {
save_flags(flags);
cli();
outb(bi.data.mix.reg, DSP_MIXER_ADDR(dev->base_addr));
bi.data.mix.data = inb(DSP_MIXER_DATA(dev->base_addr));
restore_flags(flags);
i = 1;
}
if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
return -EFAULT;
return i;
case SMCTL_SETMIXER:
if (!capable(CAP_SYS_RAWIO))
return -EACCES;
switch (SCSTATE->revhi) {
case 2:
if (bi.data.mix.mixer_type != SM_MIXER_CT1335)
return -EINVAL;
break;
case 3:
if (bi.data.mix.mixer_type != SM_MIXER_CT1345)
return -EINVAL;
break;
case 4:
if (bi.data.mix.mixer_type != SM_MIXER_CT1745)
return -EINVAL;
break;
default:
return -ENODEV;
}
if (bi.data.mix.reg >= 0x80)
return -EACCES;
save_flags(flags);
cli();
outb(bi.data.mix.reg, DSP_MIXER_ADDR(dev->base_addr));
outb(bi.data.mix.data, DSP_MIXER_DATA(dev->base_addr));
restore_flags(flags);
return 0;
}
if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
return -EFAULT;
return 0;
}
/* --------------------------------------------------------------------- */
const struct hardware_info sm_hw_sbc = {
"sbc", sizeof(struct sc_state_sbc),
sbc_open, sbc_close, sbc_ioctl, sbc_sethw
};
/* --------------------------------------------------------------------- */
static void setup_dma_fdx_dsp(struct net_device *dev, struct sm_state *sm)
{
unsigned long flags;
unsigned int isamps, osamps;
if (!reset_dsp(dev)) {
printk(KERN_ERR "%s: sbc: cannot reset sb dsp\n", sm_drvname);
return;
}
save_flags(flags);
cli();
sbc_int_ack_8bit(dev);
sbc_int_ack_16bit(dev);
/* should eventually change to set rates individually by SBC_SAMPLE_RATE_{IN/OUT} */
write_dsp(dev, SBC_SAMPLE_RATE_IN);
write_dsp(dev, SCSTATE->sr[0] >> 8);
write_dsp(dev, SCSTATE->sr[0] & 0xff);
write_dsp(dev, SBC_SAMPLE_RATE_OUT);
write_dsp(dev, SCSTATE->sr[1] >> 8);
write_dsp(dev, SCSTATE->sr[1] & 0xff);
write_dsp(dev, SBC_SPEAKER_ON);
if (sm->dma.o16bit) {
/*
* DMA channel 1 (8bit) does input (capture),
* DMA channel 2 (16bit) does output (playback)
*/
isamps = dma_setup(sm, 0, dev->dma) - 1;
osamps = dma_setup(sm, 1, sm->hdrv.ptt_out.dma2) - 1;
sbc_int_ack_8bit(dev);
sbc_int_ack_16bit(dev);
write_dsp(dev, SBC4_IN8_AI);
write_dsp(dev, SBC4_MODE_UNS_MONO);
write_dsp(dev, isamps & 0xff);
write_dsp(dev, isamps >> 8);
write_dsp(dev, SBC4_OUT16_AI);
write_dsp(dev, SBC4_MODE_SIGN_MONO);
write_dsp(dev, osamps & 0xff);
write_dsp(dev, osamps >> 8);
} else {
/*
* DMA channel 1 (8bit) does output (playback),
* DMA channel 2 (16bit) does input (capture)
*/
isamps = dma_setup(sm, 0, sm->hdrv.ptt_out.dma2) - 1;
osamps = dma_setup(sm, 1, dev->dma) - 1;
sbc_int_ack_8bit(dev);
sbc_int_ack_16bit(dev);
write_dsp(dev, SBC4_OUT8_AI);
write_dsp(dev, SBC4_MODE_UNS_MONO);
write_dsp(dev, osamps & 0xff);
write_dsp(dev, osamps >> 8);
write_dsp(dev, SBC4_IN16_AI);
write_dsp(dev, SBC4_MODE_SIGN_MONO);
write_dsp(dev, isamps & 0xff);
write_dsp(dev, isamps >> 8);
}
dma_init_receive(sm);
dma_init_transmit(sm);
restore_flags(flags);
}
/* --------------------------------------------------------------------- */
static void sbcfdx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct sm_state *sm = (struct sm_state *)dev->priv;
unsigned char intsrc, pbint = 0, captint = 0;
unsigned int ocfrag, icfrag;
unsigned long flags;
if (!dev || !sm || sm->hdrv.magic != HDLCDRV_MAGIC)
return;
save_flags(flags);
cli();
outb(0x82, DSP_MIXER_ADDR(dev->base_addr));
intsrc = inb(DSP_MIXER_DATA(dev->base_addr));
if (intsrc & 0x01) {
sbc_int_ack_8bit(dev);
if (sm->dma.o16bit) {
captint = 1;
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
dma_ptr(sm, 0, dev->dma, &icfrag);
enable_dma(dev->dma);
} else {
pbint = 1;
disable_dma(dev->dma);
clear_dma_ff(dev->dma);
dma_ptr(sm, 1, dev->dma, &ocfrag);
enable_dma(dev->dma);
}
}
if (intsrc & 0x02) {
sbc_int_ack_16bit(dev);
if (sm->dma.o16bit) {
pbint = 1;
disable_dma(sm->hdrv.ptt_out.dma2);
clear_dma_ff(sm->hdrv.ptt_out.dma2);
dma_ptr(sm, 1, sm->hdrv.ptt_out.dma2, &ocfrag);
enable_dma(sm->hdrv.ptt_out.dma2);
} else {
captint = 1;
disable_dma(sm->hdrv.ptt_out.dma2);
clear_dma_ff(sm->hdrv.ptt_out.dma2);
dma_ptr(sm, 0, sm->hdrv.ptt_out.dma2, &icfrag);
enable_dma(sm->hdrv.ptt_out.dma2);
}
}
restore_flags(flags);
sm_int_freq(sm);
sti();
if (pbint) {
if (dma_end_transmit(sm, ocfrag))
dma_clear_transmit(sm);
dma_transmit(sm);
}
if (captint) {
dma_receive(sm, icfrag);
hdlcdrv_arbitrate(dev, &sm->hdrv);
}
sm_output_status(sm);
hdlcdrv_transmitter(dev, &sm->hdrv);
hdlcdrv_receiver(dev, &sm->hdrv);
}
/* --------------------------------------------------------------------- */
static int sbcfdx_open(struct net_device *dev, struct sm_state *sm)
{
int err;
if (sizeof(sm->m) < sizeof(struct sc_state_sbc)) {
printk(KERN_ERR "sm sbc: sbc state too big: %d > %d\n",
sizeof(struct sc_state_sbc), sizeof(sm->m));
return -ENODEV;
}
if (!dev || !sm)
return -ENXIO;
if (dev->base_addr <= 0 || dev->base_addr > 0x1000-SBC_EXTENT ||
dev->irq < 2 || dev->irq > 15 || dev->dma > 3)
return -ENXIO;
if (check_region(dev->base_addr, SBC_EXTENT))
return -EACCES;
/*
* check if a card is available
*/
if (!reset_dsp(dev)) {
printk(KERN_ERR "%s: sbc: no card at io address 0x%lx\n",
sm_drvname, dev->base_addr);
return -ENODEV;
}
write_dsp(dev, SBC_GET_REVISION);
if (!read_dsp(dev, &SCSTATE->revhi) ||
!read_dsp(dev, &SCSTATE->revlo))
return -ENODEV;
printk(KERN_INFO "%s: SoundBlaster DSP revision %d.%d\n", sm_drvname,
SCSTATE->revhi, SCSTATE->revlo);
if (SCSTATE->revhi < 4) {
printk(KERN_ERR "%s: at least DSP rev 4.00 required\n", sm_drvname);
return -ENODEV;
}
if ((err = config_resources(dev, sm, 1))) {
printk(KERN_ERR "%s: invalid IRQ and/or DMA specified\n", sm_drvname);
return err;
}
/*
* initialize some variables
*/
if (!(sm->dma.ibuf = kmalloc(sm->dma.ifragsz * (NUM_FRAGMENTS+1), GFP_KERNEL | GFP_DMA)))
return -ENOMEM;
if (!(sm->dma.obuf = kmalloc(sm->dma.ofragsz * NUM_FRAGMENTS, GFP_KERNEL | GFP_DMA))) {
kfree(sm->dma.ibuf);
return -ENOMEM;
}
dma_init_transmit(sm);
dma_init_receive(sm);
memset(&sm->m, 0, sizeof(sm->m));
memset(&sm->d, 0, sizeof(sm->d));
if (sm->mode_tx->init)
sm->mode_tx->init(sm);
if (sm->mode_rx->init)
sm->mode_rx->init(sm);
if (request_dma(dev->dma, sm->hwdrv->hw_name)) {
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
return -EBUSY;
}
if (request_dma(sm->hdrv.ptt_out.dma2, sm->hwdrv->hw_name)) {
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
free_dma(dev->dma);
return -EBUSY;
}
if (request_irq(dev->irq, sbcfdx_interrupt, SA_INTERRUPT,
sm->hwdrv->hw_name, dev)) {
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
free_dma(dev->dma);
free_dma(sm->hdrv.ptt_out.dma2);
return -EBUSY;
}
request_region(dev->base_addr, SBC_EXTENT, sm->hwdrv->hw_name);
setup_dma_fdx_dsp(dev, sm);
return 0;
}
/* --------------------------------------------------------------------- */
static int sbcfdx_close(struct net_device *dev, struct sm_state *sm)
{
if (!dev || !sm)
return -EINVAL;
/*
* disable interrupts
*/
disable_dma(dev->dma);
disable_dma(sm->hdrv.ptt_out.dma2);
reset_dsp(dev);
free_irq(dev->irq, dev);
free_dma(dev->dma);
free_dma(sm->hdrv.ptt_out.dma2);
release_region(dev->base_addr, SBC_EXTENT);
kfree(sm->dma.ibuf);
kfree(sm->dma.obuf);
return 0;
}
/* --------------------------------------------------------------------- */
static int sbcfdx_sethw(struct net_device *dev, struct sm_state *sm, char *mode)
{
char *cp = strchr(mode, '.');
const struct modem_tx_info **mtp = sm_modem_tx_table;
const struct modem_rx_info **mrp;
if (!strcmp(mode, "off")) {
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return 0;
}
if (cp)
*cp++ = '\0';
else
cp = mode;
for (; *mtp; mtp++) {
if ((*mtp)->loc_storage > sizeof(sm->m)) {
printk(KERN_ERR "%s: insufficient storage for modulator %s (%d)\n",
sm_drvname, (*mtp)->name, (*mtp)->loc_storage);
continue;
}
if (!(*mtp)->name || strcmp((*mtp)->name, mode))
continue;
if ((*mtp)->srate < 5000 || (*mtp)->srate > 44100)
continue;
for (mrp = sm_modem_rx_table; *mrp; mrp++) {
if ((*mrp)->loc_storage > sizeof(sm->d)) {
printk(KERN_ERR "%s: insufficient storage for demodulator %s (%d)\n",
sm_drvname, (*mrp)->name, (*mrp)->loc_storage);
continue;
}
if ((*mrp)->name && !strcmp((*mrp)->name, cp) &&
(*mtp)->srate >= 5000 && (*mtp)->srate <= 44100 &&
(*mrp)->srate == (*mtp)->srate) {
sm->mode_tx = *mtp;
sm->mode_rx = *mrp;
SCSTATE->sr[0] = sm->mode_rx->srate;
SCSTATE->sr[1] = sm->mode_tx->srate;
sm->dma.ifragsz = (sm->mode_rx->srate + 50)/100;
sm->dma.ofragsz = (sm->mode_tx->srate + 50)/100;
if (sm->dma.ifragsz < sm->mode_rx->overlap)
sm->dma.ifragsz = sm->mode_rx->overlap;
if (sm->mode_rx->demodulator_s16 && sm->mode_tx->modulator_u8) {
sm->dma.i16bit = 1;
sm->dma.o16bit = 0;
sm->dma.ifragsz <<= 1;
} else if (sm->mode_rx->demodulator_u8 && sm->mode_tx->modulator_s16) {
sm->dma.i16bit = 0;
sm->dma.o16bit = 1;
sm->dma.ofragsz <<= 1;
} else {
printk(KERN_INFO "%s: mode %s or %s unusable\n", sm_drvname,
sm->mode_rx->name, sm->mode_tx->name);
sm->mode_tx = NULL;
sm->mode_rx = NULL;
return -EINVAL;
}
return 0;
}
}
}
return -EINVAL;
}
/* --------------------------------------------------------------------- */
static int sbcfdx_ioctl(struct net_device *dev, struct sm_state *sm, struct ifreq *ifr,
struct hdlcdrv_ioctl *hi, int cmd)
{
if (cmd != SIOCDEVPRIVATE)
return -ENOIOCTLCMD;
if (hi->cmd == HDLCDRVCTL_MODEMPARMASK)
return HDLCDRV_PARMASK_IOBASE | HDLCDRV_PARMASK_IRQ |
HDLCDRV_PARMASK_DMA | HDLCDRV_PARMASK_DMA2 | HDLCDRV_PARMASK_SERIOBASE |
HDLCDRV_PARMASK_PARIOBASE | HDLCDRV_PARMASK_MIDIIOBASE;
return sbc_ioctl(dev, sm, ifr, hi, cmd);
}
/* --------------------------------------------------------------------- */
const struct hardware_info sm_hw_sbcfdx = {
"sbcfdx", sizeof(struct sc_state_sbc),
sbcfdx_open, sbcfdx_close, sbcfdx_ioctl, sbcfdx_sethw
};
/* --------------------------------------------------------------------- */