/*
* drivers/mtd/nand.c
*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/tech/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
* 2002 Thomas Gleixner (tglx@linutronix.de)
*
* 10-29-2001 Thomas Gleixner (tglx@linutronix.de)
* - Changed nand_chip structure for controlline function to
* support different hardware structures (Access to
* controllines ALE,CLE,NCE via hardware specific function.
* - exit out of "failed erase block" changed, to avoid
* driver hangup
* - init_waitqueue_head added in function nand_scan !!
*
* 01-30-2002 Thomas Gleixner (tglx@linutronix.de)
* change in nand_writev to block invalid vecs entries
*
* 02-11-2002 Thomas Gleixner (tglx@linutronix.de)
* - major rewrite to avoid duplicated code
* common nand_write_page function
* common get_chip function
* - added oob_config structure for out of band layouts
* - write_oob changed for partial programming
* - read cache for faster access for subsequent reads
* from the same page.
* - support for different read/write address
* - support for device ready/busy line
* - read oob for more than one page enabled
*
* 02-27-2002 Thomas Gleixner (tglx@linutronix.de)
* - command-delay can be programmed
* - fixed exit from erase with callback-function enabled
*
* 03-21-2002 Thomas Gleixner (tglx@linutronix.de)
* - DEBUG improvements provided by Elizabeth Clarke
* (eclarke@aminocom.com)
* - added zero check for this->chip_delay
*
* 04-03-2002 Thomas Gleixner (tglx@linutronix.de)
* - added added hw-driver supplied command and wait functions
* - changed blocking for erase (erase suspend enabled)
* - check pointers before accessing flash provided by
* John Hall (john.hall@optionexist.co.uk)
*
* 04-09-2002 Thomas Gleixner (tglx@linutronix.de)
* - nand_wait repaired
*
* 04-28-2002 Thomas Gleixner (tglx@linutronix.de)
* - OOB config defines moved to nand.h
*
* 08-01-2002 Thomas Gleixner (tglx@linutronix.de)
* - changed my mailaddress, added pointer to tech/nand.html
*
* 08-07-2002 Thomas Gleixner (tglx@linutronix.de)
* forced bad block location to byte 5 of OOB, even if
* CONFIG_MTD_NAND_ECC_JFFS2 is not set, to prevent
* erase /dev/mtdX from erasing bad blocks and destroying
* bad block info
*
* 08-10-2002 Thomas Gleixner (tglx@linutronix.de)
* Fixed writing tail of data. Thanks to Alice Hennessy
* <ahennessy@mvista.com>.
*
* 08-10-2002 Thomas Gleixner (tglx@linutronix.de)
* nand_read_ecc and nand_write_page restructured to support
* hardware ECC. Thanks to Steven Hein (ssh@sgi.com)
* for basic implementation and suggestions.
* 3 new pointers in nand_chip structure:
* calculate_ecc, correct_data, enabled_hwecc
* forcing all hw-drivers to support page cache
* eccvalid_pos is now mandatory
*
* 08-17-2002 tglx: fixed signed/unsigned missmatch in write.c
* Thanks to Ken Offer <koffer@arlut.utexas.edu>
*
* 08-29-2002 tglx: use buffered read/write only for non pagealigned
* access, speed up the aligned path by using the fs-buffer
* reset chip removed from nand_select(), implicit done
* only, when erase is interrupted
* waitfuntion use yield, instead of schedule_timeout
* support for 6byte/512byte hardware ECC
* read_ecc, write_ecc extended for different oob-layout
* selections: Implemented NAND_NONE_OOB, NAND_JFFS2_OOB,
* NAND_YAFFS_OOB. fs-driver gives one of these constants
* to select the oob-layout fitting the filesystem.
* oobdata can be read together with the raw data, when
* the fs-driver supplies a big enough buffer.
* size = 12 * number of pages to read (256B pagesize)
* 24 * number of pages to read (512B pagesize)
* the buffer contains 8/16 byte oobdata and 4/8 byte
* returncode from calculate_ecc
* oobdata can be given from filesystem to program them
* in one go together with the raw data. ECC codes are
* filled in at the place selected by oobsel.
*
* 09-04-2002 tglx: fixed write_verify (John Hall (john.hall@optionexist.co.uk))
*
* 11-11-2002 tglx: fixed debug output in nand_write_page
* (John Hall (john.hall@optionexist.co.uk))
*
* 11-25-2002 tglx: Moved device ID/ manufacturer ID from nand_ids.h
* Splitted device ID and manufacturer ID table.
* Removed CONFIG_MTD_NAND_ECC, as it defaults to ECC_NONE for
* mtd->read / mtd->write and is controllable by the fs driver
* for mtd->read_ecc / mtd->write_ecc
* some minor cleanups
*
* 12-05-2000 tglx: Dave Ellis (DGE@sixnetio) provided the fix for
* WRITE_VERIFY long time ago. Thanks for remembering me.
*
* $Id: nand.c,v 1.36 2002/12/05 20:59:11 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/interrupt.h>
#include <asm/io.h>
/*
* Macros for low-level register control
*/
#define nand_select() this->hwcontrol(NAND_CTL_SETNCE);
#define nand_deselect() this->hwcontrol(NAND_CTL_CLRNCE);
/*
* out of band configuration for different filesystems
*/
static int oobconfigs[][6] = {
{ 0,0,0,0,0,0},
{ NAND_JFFS2_OOB_ECCPOS0, NAND_JFFS2_OOB_ECCPOS1, NAND_JFFS2_OOB_ECCPOS2,
NAND_JFFS2_OOB_ECCPOS3, NAND_JFFS2_OOB_ECCPOS4, NAND_JFFS2_OOB_ECCPOS5 },
{ NAND_YAFFS_OOB_ECCPOS0, NAND_YAFFS_OOB_ECCPOS1, NAND_YAFFS_OOB_ECCPOS2,
NAND_YAFFS_OOB_ECCPOS3, NAND_YAFFS_OOB_ECCPOS4, NAND_YAFFS_OOB_ECCPOS5 }
};
/*
* NAND low-level MTD interface functions
*/
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * eccbuf, int oobsel);
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, int oobsel);
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs,
unsigned long count, loff_t to, size_t * retlen);
static int nand_writev_ecc (struct mtd_info *mtd, const struct iovec *vecs,
unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, int oobsel);
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync (struct mtd_info *mtd);
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, int col,
int last, u_char *oob_buf, int oobsel);
/*
* Send command to NAND device
*/
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
register unsigned long NAND_IO_ADDR = this->IO_ADDR_W;
/* Begin command latch cycle */
this->hwcontrol (NAND_CTL_SETCLE);
/*
* Write out the command to the device.
*/
if (command != NAND_CMD_SEQIN)
writeb (command, NAND_IO_ADDR);
else {
if (mtd->oobblock == 256 && column >= 256) {
column -= 256;
writeb (NAND_CMD_READOOB, NAND_IO_ADDR);
writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
} else if (mtd->oobblock == 512 && column >= 256) {
if (column < 512) {
column -= 256;
writeb (NAND_CMD_READ1, NAND_IO_ADDR);
writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
} else {
column -= 512;
writeb (NAND_CMD_READOOB, NAND_IO_ADDR);
writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
}
} else {
writeb (NAND_CMD_READ0, NAND_IO_ADDR);
writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
}
}
/* Set ALE and clear CLE to start address cycle */
this->hwcontrol (NAND_CTL_CLRCLE);
if (column != -1 || page_addr != -1) {
this->hwcontrol (NAND_CTL_SETALE);
/* Serially input address */
if (column != -1)
writeb (column, NAND_IO_ADDR);
if (page_addr != -1) {
writeb ((unsigned char) (page_addr & 0xff), NAND_IO_ADDR);
writeb ((unsigned char) ((page_addr >> 8) & 0xff), NAND_IO_ADDR);
/* One more address cycle for higher density devices */
if (mtd->size & 0x0c000000)
writeb ((unsigned char) ((page_addr >> 16) & 0x0f), NAND_IO_ADDR);
}
/* Latch in address */
this->hwcontrol (NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
this->hwcontrol (NAND_CTL_SETCLE);
writeb (NAND_CMD_STATUS, NAND_IO_ADDR);
this->hwcontrol (NAND_CTL_CLRCLE);
while ( !(readb (this->IO_ADDR_R) & 0x40));
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
return;
}
}
/* wait until command is processed */
while (!this->dev_ready());
}
/*
* Get chip for selected access
*/
static inline void nand_get_chip (struct nand_chip *this, struct mtd_info *mtd, int new_state, int *erase_state)
{
DECLARE_WAITQUEUE (wait, current);
/*
* Grab the lock and see if the device is available
* For erasing, we keep the spinlock until the
* erase command is written.
*/
retry:
spin_lock_bh (&this->chip_lock);
if (this->state == FL_READY) {
this->state = new_state;
if (new_state != FL_ERASING)
spin_unlock_bh (&this->chip_lock);
return;
}
if (this->state == FL_ERASING) {
if (new_state != FL_ERASING) {
this->state = new_state;
spin_unlock_bh (&this->chip_lock);
nand_select (); /* select in any case */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
return;
}
}
set_current_state (TASK_UNINTERRUPTIBLE);
add_wait_queue (&this->wq, &wait);
spin_unlock_bh (&this->chip_lock);
schedule ();
remove_wait_queue (&this->wq, &wait);
goto retry;
}
/*
* Wait for command done. This applies to erase and program only
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long timeo = jiffies;
int status;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
spin_lock_bh (&this->chip_lock);
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
while (time_before(jiffies, timeo)) {
/* Check, if we were interrupted */
if (this->state != state) {
spin_unlock_bh (&this->chip_lock);
return 0;
}
if (this->dev_ready) {
if (this->dev_ready ())
break;
}
if (readb (this->IO_ADDR_R) & 0x40)
break;
spin_unlock_bh (&this->chip_lock);
yield ();
spin_lock_bh (&this->chip_lock);
}
status = (int) readb (this->IO_ADDR_R);
spin_unlock_bh (&this->chip_lock);
return status;
}
/*
* Nand_page_program function is used for write and writev !
*/
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this,
int page, int col, int last, u_char *oob_buf, int oobsel)
{
int i, status;
u_char ecc_code[6], *oob_data;
int eccmode = oobsel ? this->eccmode : NAND_ECC_NONE;
int *oob_config = oobconfigs[oobsel];
/* pad oob area, if we have no oob buffer from fs-driver */
if (!oob_buf) {
oob_data = &this->data_buf[mtd->oobblock];
for (i = 0; i < mtd->oobsize; i++)
oob_data[i] = 0xff;
} else
oob_data = oob_buf;
/* software ecc 3 Bytes ECC / 256 Byte Data ? */
if (eccmode == NAND_ECC_SOFT) {
/* Read back previous written data, if col > 0 */
if (col) {
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
for (i = 0; i < col; i++)
this->data_poi[i] = readb (this->IO_ADDR_R);
}
if ((col < this->eccsize) && (last >= this->eccsize)) {
this->calculate_ecc (&this->data_poi[0], &(ecc_code[0]));
for (i = 0; i < 3; i++)
oob_data[oob_config[i]] = ecc_code[i];
}
/* Calculate and write the second ECC if we have enough data */
if ((mtd->oobblock == 512) && (last == 512)) {
this->calculate_ecc (&this->data_poi[256], &(ecc_code[3]));
for (i = 3; i < 6; i++)
oob_data[oob_config[i]] = ecc_code[i];
}
} else {
/* For hardware ECC skip ECC, if we have no full page write */
if (eccmode != NAND_ECC_NONE && (col || last != mtd->oobblock))
eccmode = NAND_ECC_NONE;
}
/* Prepad for partial page programming !!! */
for (i = 0; i < col; i++)
this->data_poi[i] = 0xff;
/* Postpad for partial page programming !!! oob is already padded */
for (i = last; i < mtd->oobblock; i++)
this->data_poi[i] = 0xff;
/* Send command to begin auto page programming */
this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
/* Write out complete page of data, take care of eccmode */
switch (this->eccmode) {
/* No ecc and software ecc 3/256, write all */
case NAND_ECC_NONE:
case NAND_ECC_SOFT:
for (i = 0; i < mtd->oobblock; i++)
writeb ( this->data_poi[i] , this->IO_ADDR_W);
break;
/* Hardware ecc 3 byte / 256 data, write first half, get ecc, then second, if 512 byte pagesize */
case NAND_ECC_HW3_256:
this->enable_hwecc (NAND_ECC_WRITE); /* enable hardware ecc logic for write */
for (i = 0; i < mtd->eccsize; i++)
writeb ( this->data_poi[i] , this->IO_ADDR_W);
this->calculate_ecc (NULL, &(ecc_code[0]));
for (i = 0; i < 3; i++)
oob_data[oob_config[i]] = ecc_code[i];
if (mtd->oobblock == 512) {
this->enable_hwecc (NAND_ECC_WRITE); /* enable hardware ecc logic for write*/
for (i = mtd->eccsize; i < mtd->oobblock; i++)
writeb ( this->data_poi[i] , this->IO_ADDR_W);
this->calculate_ecc (NULL, &(ecc_code[3]));
for (i = 3; i < 6; i++)
oob_data[oob_config[i]] = ecc_code[i];
}
break;
/* Hardware ecc 3 byte / 512 byte data, write full page */
case NAND_ECC_HW3_512:
this->enable_hwecc (NAND_ECC_WRITE); /* enable hardware ecc logic */
for (i = 0; i < mtd->oobblock; i++)
writeb ( this->data_poi[i] , this->IO_ADDR_W);
this->calculate_ecc (NULL, &(ecc_code[0]));
for (i = 0; i < 3; i++)
oob_data[oob_config[i]] = ecc_code[i];
break;
/* Hardware ecc 6 byte / 512 byte data, write full page */
case NAND_ECC_HW6_512:
this->enable_hwecc (NAND_ECC_WRITE); /* enable hardware ecc logic */
for (i = 0; i < mtd->oobblock; i++)
writeb ( this->data_poi[i] , this->IO_ADDR_W);
this->calculate_ecc (NULL, &(ecc_code[0]));
for (i = 0; i < 6; i++)
oob_data[oob_config[i]] = ecc_code[i];
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* Write out OOB data */
for (i = 0; i < mtd->oobsize; i++)
writeb ( oob_data[i] , this->IO_ADDR_W);
/* Send command to actually program the data */
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
/* call wait ready function */
status = this->waitfunc (mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & 0x01) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
return -EIO;
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/*
* The NAND device assumes that it is always writing to
* a cleanly erased page. Hence, it performs its internal
* write verification only on bits that transitioned from
* 1 to 0. The device does NOT verify the whole page on a
* byte by byte basis. It is possible that the page was
* not completely erased or the page is becoming unusable
* due to wear. The read with ECC would catch the error
* later when the ECC page check fails, but we would rather
* catch it early in the page write stage. Better to write
* no data than invalid data.
*/
/* Send command to read back the page */
this->cmdfunc (mtd, NAND_CMD_READ0, col, page);
/* Loop through and verify the data */
for (i = col; i < last; i++) {
if (this->data_poi[i] != readb (this->IO_ADDR_R)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
return -EIO;
}
}
/* check, if we have a fs-supplied oob-buffer */
if (oob_buf) {
for (i = 0; i < mtd->oobsize; i++) {
if (oob_data[i] != readb (this->IO_ADDR_R)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
return -EIO;
}
}
} else {
if (eccmode != NAND_ECC_NONE && !col && last == mtd->oobblock) {
int ecc_bytes = 0;
switch (this->eccmode) {
case NAND_ECC_SOFT:
case NAND_ECC_HW3_256: ecc_bytes = (mtd->oobblock == 512) ? 6 : 3; break;
case NAND_ECC_HW3_512: ecc_bytes = 3; break;
case NAND_ECC_HW6_512: ecc_bytes = 6; break;
}
for (i = 0; i < mtd->oobsize; i++)
oob_data[i] = readb (this->IO_ADDR_R);
for (i = 0; i < ecc_bytes; i++) {
if (oob_data[oob_config[i]] != ecc_code[i]) {
DEBUG (MTD_DEBUG_LEVEL0,
"%s: Failed ECC write "
"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
return -EIO;
}
}
}
}
#endif
return 0;
}
/*
* Use NAND read ECC
*/
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
return (nand_read_ecc (mtd, from, len, retlen, buf, NULL, 0));
}
/*
* NAND read with ECC
*/
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf, int oobsel)
{
int j, col, page, end, ecc;
int erase_state = 0;
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
struct nand_chip *this = mtd->priv;
u_char *data_poi, *oob_data = oob_buf;
u_char ecc_calc[6];
u_char ecc_code[6];
int eccmode = oobsel ? this->eccmode : NAND_ECC_NONE;
int *oob_config = oobconfigs[oobsel];
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd ,FL_READING, &erase_state);
/* Select the NAND device */
nand_select ();
/* First we calculate the starting page */
page = from >> this->page_shift;
/* Get raw starting column */
col = from & (mtd->oobblock - 1);
end = mtd->oobblock;
ecc = mtd->eccsize;
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
/* Loop until all data read */
while (read < len) {
/* If we have consequent page reads, apply delay or wait for ready/busy pin */
if (read) {
if (!this->dev_ready)
udelay (this->chip_delay);
else
while (!this->dev_ready());
}
/*
* If the read is not page aligned, we have to read into data buffer
* due to ecc, else we read into return buffer direct
*/
if (!col && (len - read) >= end)
data_poi = &buf[read];
else
data_poi = this->data_buf;
/* get oob area, if we have no oob buffer from fs-driver */
if (!oob_buf) {
oob_data = &this->data_buf[end];
oob = 0;
}
j = 0;
switch (eccmode) {
case NAND_ECC_NONE: /* No ECC, Read in a page */
while (j < end)
data_poi[j++] = readb (this->IO_ADDR_R);
break;
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
while (j < end)
data_poi[j++] = readb (this->IO_ADDR_R);
this->calculate_ecc (&data_poi[0], &ecc_calc[0]);
if (mtd->oobblock == 512)
this->calculate_ecc (&data_poi[256], &ecc_calc[3]);
break;
case NAND_ECC_HW3_256: /* Hardware ECC 3 byte /256 byte data: Read in first 256 byte, get ecc, */
this->enable_hwecc (NAND_ECC_READ);
while (j < ecc)
data_poi[j++] = readb (this->IO_ADDR_R);
this->calculate_ecc (&data_poi[0], &ecc_calc[0]); /* read from hardware */
if (mtd->oobblock == 512) { /* read second, if pagesize = 512 */
this->enable_hwecc (NAND_ECC_READ);
while (j < end)
data_poi[j++] = readb (this->IO_ADDR_R);
this->calculate_ecc (&data_poi[256], &ecc_calc[3]); /* read from hardware */
}
break;
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512: /* Hardware ECC 3/6 byte / 512 byte data : Read in a page */
this->enable_hwecc (NAND_ECC_READ);
while (j < end)
data_poi[j++] = readb (this->IO_ADDR_R);
this->calculate_ecc (&data_poi[0], &ecc_calc[0]); /* read from hardware */
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* read oobdata */
for (j = 0; j < mtd->oobsize; j++)
oob_data[oob + j] = readb (this->IO_ADDR_R);
/* Skip ECC, if not active */
if (eccmode == NAND_ECC_NONE)
goto readdata;
/* Pick the ECC bytes out of the oob data */
for (j = 0; j < 6; j++)
ecc_code[j] = oob_data[oob + oob_config[j]];
/* correct data, if neccecary */
ecc_status = this->correct_data (&data_poi[0], &ecc_code[0], &ecc_calc[0]);
/* check, if we have a fs supplied oob-buffer */
if (oob_buf) {
oob += mtd->oobsize;
*((int *)&oob_data[oob]) = ecc_status;
oob += sizeof(int);
}
if (ecc_status == -1) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
if (mtd->oobblock == 512 && eccmode != NAND_ECC_HW3_512) {
ecc_status = this->correct_data (&data_poi[256], &ecc_code[3], &ecc_calc[3]);
if (oob_buf) {
*((int *)&oob_data[oob]) = ecc_status;
oob += sizeof(int);
}
if (ecc_status == -1) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
}
readdata:
if (col || (len - read) < end) {
for (j = col; j < end && read < len; j++)
buf[read++] = data_poi[j];
} else
read += mtd->oobblock;
/* For subsequent reads align to page boundary. */
col = 0;
/* Increment page address */
page++;
}
/* De-select the NAND device */
nand_deselect ();
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
/*
* Return success, if no ECC failures, else -EIO
* fs driver will take care of that, because
* retlen == desired len and result == -EIO
*/
*retlen = read;
return ecc_failed ? -EIO : 0;
}
/*
* NAND read out-of-band
*/
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
int i, col, page;
int erase_state = 0;
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Shift to get page */
page = ((int) from) >> this->page_shift;
/* Mask to get column */
col = from & 0x0f;
/* Initialize return length value */
*retlen = 0;
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd , FL_READING, &erase_state);
/* Select the NAND device */
nand_select ();
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page);
/*
* Read the data, if we read more than one page
* oob data, let the device transfer the data !
*/
for (i = 0; i < len; i++) {
buf[i] = readb (this->IO_ADDR_R);
if ((col++ & (mtd->oobsize - 1)) == (mtd->oobsize - 1))
udelay (this->chip_delay);
}
/* De-select the NAND device */
nand_deselect ();
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
/* Return happy */
*retlen = len;
return 0;
}
/*
* Use NAND write ECC
*/
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, 0));
}
/*
* NAND write with ECC
*/
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, int oobsel)
{
int i, page, col, cnt, ret = 0, oob = 0, written = 0;
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Do not allow write past end of device */
if ((to + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
return -EINVAL;
}
/* Shift to get page */
page = ((int) to) >> this->page_shift;
/* Get the starting column */
col = to & (mtd->oobblock - 1);
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_WRITING, NULL);
/* Select the NAND device */
nand_select ();
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(readb (this->IO_ADDR_R) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Device is write protected!!!\n");
ret = -EIO;
goto out;
}
/* Loop until all data is written */
while (written < len) {
/*
* Check, if we have a full page write, then we can
* use the given buffer, else we have to copy
*/
if (!col && (len - written) >= mtd->oobblock) {
this->data_poi = (u_char*) &buf[written];
cnt = mtd->oobblock;
} else {
cnt = 0;
for (i = col; i < len && i < mtd->oobblock; i++) {
this->data_buf[i] = buf[written + i];
cnt++;
}
this->data_poi = this->data_buf;
}
/* We use the same function for write and writev !) */
if (eccbuf) {
ret = nand_write_page (mtd, this, page, col, cnt ,&eccbuf[oob], oobsel);
oob += mtd->oobsize;
} else
ret = nand_write_page (mtd, this, page, col, cnt, NULL, oobsel);
if (ret)
goto out;
/* Update written bytes count */
written += cnt;
/* Next write is aligned */
col = 0;
/* Increment page address */
page++;
}
out:
/* De-select the NAND device */
nand_deselect ();
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
*retlen = written;
return ret;
}
/*
* NAND write out-of-band
*/
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
int i, column, page, status, ret = 0;
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Shift to get page */
page = ((int) to) >> this->page_shift;
/* Mask to get column */
column = to & 0x1f;
/* Initialize return length value */
*retlen = 0;
/* Do not allow write past end of page */
if ((column + len) > mtd->oobsize) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_WRITING, NULL);
/* Select the NAND device */
nand_select ();
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(readb (this->IO_ADDR_R) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Device is write protected!!!\n");
ret = -EIO;
goto out;
}
/* Write out desired data */
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page);
/* prepad 0xff for partial programming */
for (i = 0; i < column; i++)
writeb (0xff, this->IO_ADDR_W);
/* write data */
for (i = 0; i < len; i++)
writeb (buf[i], this->IO_ADDR_W);
/* postpad 0xff for partial programming */
for (i = len + column; i < mtd->oobsize; i++)
writeb (0xff, this->IO_ADDR_W);
/* Send command to program the OOB data */
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
status = this->waitfunc (mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & 0x01) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
/* Return happy */
*retlen = len;
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
this->cmdfunc (mtd, NAND_CMD_READOOB, column, page);
/* Loop through and verify the data */
for (i = 0; i < len; i++) {
if (buf[i] != readb (this->IO_ADDR_R)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
}
#endif
out:
/* De-select the NAND device */
nand_deselect ();
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
return ret;
}
/*
* NAND write with iovec
*/
static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count,
loff_t to, size_t * retlen)
{
return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, 0));
}
static int nand_writev_ecc (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count,
loff_t to, size_t * retlen, u_char *eccbuf, int oobsel)
{
int i, page, col, cnt, len, total_len, ret = 0, written = 0;
struct nand_chip *this = mtd->priv;
/* Calculate total length of data */
total_len = 0;
for (i = 0; i < count; i++)
total_len += (int) vecs[i].iov_len;
DEBUG (MTD_DEBUG_LEVEL3,
"nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
/* Do not allow write past end of page */
if ((to + total_len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
return -EINVAL;
}
/* Shift to get page */
page = ((int) to) >> this->page_shift;
/* Get the starting column */
col = to & (mtd->oobblock - 1);
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_WRITING, NULL);
/* Select the NAND device */
nand_select ();
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(readb (this->IO_ADDR_R) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Device is write protected!!!\n");
ret = -EIO;
goto out;
}
/* Loop until all iovecs' data has been written */
cnt = col;
len = 0;
while (count) {
/*
* Check, if we write from offset 0 and if the tuple
* gives us not enough data for a full page write. Then we
* can use the iov direct, else we have to copy into
* data_buf.
*/
if (!cnt && (vecs->iov_len - len) >= mtd->oobblock) {
cnt = mtd->oobblock;
this->data_poi = (u_char *) vecs->iov_base;
this->data_poi += len;
len += mtd->oobblock;
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
vecs++;
len = 0;
count--;
}
} else {
/*
* Read data out of each tuple until we have a full page
* to write or we've read all the tuples.
*/
while ((cnt < mtd->oobblock) && count) {
if (vecs->iov_base != NULL && vecs->iov_len) {
this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
}
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
vecs++;
len = 0;
count--;
}
}
this->data_poi = this->data_buf;
}
/* We use the same function for write and writev !) */
ret = nand_write_page (mtd, this, page, col, cnt, NULL, oobsel);
if (ret)
goto out;
/* Update written bytes count */
written += (cnt - col);
/* Reset written byte counter and column */
col = cnt = 0;
/* Increment page address */
page++;
}
out:
/* De-select the NAND device */
nand_deselect ();
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
*retlen = written;
return ret;
}
/*
* NAND erase a block
*/
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
{
int page, len, status, pages_per_block, ret;
struct nand_chip *this = mtd->priv;
DECLARE_WAITQUEUE (wait, current);
DEBUG (MTD_DEBUG_LEVEL3,
"nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
/* Start address must align on block boundary */
if (instr->addr & (mtd->erasesize - 1)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
return -EINVAL;
}
/* Length must align on block boundary */
if (instr->len & (mtd->erasesize - 1)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
return -EINVAL;
}
/* Do not allow erase past end of device */
if ((instr->len + instr->addr) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_ERASING, NULL);
/* Shift to get first page */
page = (int) (instr->addr >> this->page_shift);
/* Calculate pages in each block */
pages_per_block = mtd->erasesize / mtd->oobblock;
/* Select the NAND device */
nand_select ();
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(readb (this->IO_ADDR_R) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Loop through the pages */
len = instr->len;
instr->state = MTD_ERASING;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks ! */
this->cmdfunc (mtd, NAND_CMD_READOOB, NAND_BADBLOCK_POS, page);
if (readb (this->IO_ADDR_R) != 0xff) {
printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Send commands to erase a page */
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
spin_unlock_bh (&this->chip_lock);
status = this->waitfunc (mtd, this, FL_ERASING);
/* Get spinlock, in case we exit */
spin_lock_bh (&this->chip_lock);
/* See if block erase succeeded */
if (status & 0x01) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Check, if we were interupted */
if (this->state == FL_ERASING) {
/* Increment page address and decrement length */
len -= mtd->erasesize;
page += pages_per_block;
}
/* Release the spin lock */
spin_unlock_bh (&this->chip_lock);
erase_retry:
spin_lock_bh (&this->chip_lock);
/* Check the state and sleep if it changed */
if (this->state == FL_ERASING || this->state == FL_READY) {
/* Select the NAND device again, if we were interrupted */
this->state = FL_ERASING;
nand_select ();
continue;
} else {
set_current_state (TASK_UNINTERRUPTIBLE);
add_wait_queue (&this->wq, &wait);
spin_unlock_bh (&this->chip_lock);
schedule ();
remove_wait_queue (&this->wq, &wait);
goto erase_retry;
}
}
instr->state = MTD_ERASE_DONE;
erase_exit:
/* De-select the NAND device */
nand_deselect ();
spin_unlock_bh (&this->chip_lock);
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;;
/* Do call back function */
if (!ret && instr->callback)
instr->callback (instr);
/* The device is ready */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
spin_unlock_bh (&this->chip_lock);
/* Return more or less happy */
return ret;
}
/*
* NAND sync
*/
static void nand_sync (struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
DECLARE_WAITQUEUE (wait, current);
DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
retry:
/* Grab the spinlock */
spin_lock_bh (&this->chip_lock);
/* See what's going on */
switch (this->state) {
case FL_READY:
case FL_SYNCING:
this->state = FL_SYNCING;
spin_unlock_bh (&this->chip_lock);
break;
default:
/* Not an idle state */
add_wait_queue (&this->wq, &wait);
spin_unlock_bh (&this->chip_lock);
schedule ();
remove_wait_queue (&this->wq, &wait);
goto retry;
}
/* Lock the device */
spin_lock_bh (&this->chip_lock);
/* Set the device to be ready again */
if (this->state == FL_SYNCING) {
this->state = FL_READY;
wake_up (&this->wq);
}
/* Unlock the device */
spin_unlock_bh (&this->chip_lock);
}
/*
* Scan for the NAND device
*/
int nand_scan (struct mtd_info *mtd)
{
int i, nand_maf_id, nand_dev_id;
struct nand_chip *this = mtd->priv;
/* check for proper chip_delay setup, set 20us if not */
if (!this->chip_delay)
this->chip_delay = 20;
/* check, if a user supplied command function given */
if (this->cmdfunc == NULL)
this->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (this->waitfunc == NULL)
this->waitfunc = nand_wait;
/* Select the device */
nand_select ();
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
nand_maf_id = readb (this->IO_ADDR_R);
nand_dev_id = readb (this->IO_ADDR_R);
/* Print and store flash device information */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (nand_dev_id == nand_flash_ids[i].id && !mtd->size) {
mtd->name = nand_flash_ids[i].name;
mtd->erasesize = nand_flash_ids[i].erasesize;
mtd->size = (1 << nand_flash_ids[i].chipshift);
mtd->eccsize = 256;
if (nand_flash_ids[i].page256) {
mtd->oobblock = 256;
mtd->oobsize = 8;
this->page_shift = 8;
} else {
mtd->oobblock = 512;
mtd->oobsize = 16;
this->page_shift = 9;
}
/* Try to identify manufacturer */
for (i = 0; nand_manuf_ids[i].id != 0x0; i++) {
if (nand_manuf_ids[i].id == nand_maf_id)
break;
}
printk (KERN_INFO "NAND device: Manufacture ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[i].name , mtd->name);
break;
}
}
/*
* check ECC mode, default to software
* if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
* fallback to software ECC
*/
this->eccsize = 256; /* set default eccsize */
switch (this->eccmode) {
case NAND_ECC_HW3_512:
if (mtd->oobblock == 256) {
printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
break;
} else
this->eccsize = 512; /* set eccsize to 512 and fall through for function check */
case NAND_ECC_HW3_256:
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
break;
printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
BUG();
case NAND_ECC_NONE:
this->eccmode = NAND_ECC_NONE;
break;
case NAND_ECC_SOFT:
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* Initialize state, waitqueue and spinlock */
this->state = FL_READY;
init_waitqueue_head (&this->wq);
spin_lock_init (&this->chip_lock);
/* De-select the device */
nand_deselect ();
/* Print warning message for no device */
if (!mtd->size) {
printk (KERN_WARNING "No NAND device found!!!\n");
return 1;
}
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
mtd->module = THIS_MODULE;
mtd->ecctype = MTD_ECC_SW;
mtd->erase = nand_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = nand_read;
mtd->write = nand_write;
mtd->read_ecc = nand_read_ecc;
mtd->write_ecc = nand_write_ecc;
mtd->read_oob = nand_read_oob;
mtd->write_oob = nand_write_oob;
mtd->readv = NULL;
mtd->writev = nand_writev;
mtd->writev_ecc = nand_writev_ecc;
mtd->sync = nand_sync;
mtd->lock = NULL;
mtd->unlock = NULL;
mtd->suspend = NULL;
mtd->resume = NULL;
/* Return happy */
return 0;
}
EXPORT_SYMBOL (nand_scan);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Steven J. Hill <sjhill@cotw.com>, Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION ("Generic NAND flash driver code");