File: [Development] / linux-2.4-xfs / drivers / ide / raid / pdcraid.c (download)
Revision 1.3, Wed Feb 25 02:07:34 2004 UTC (13 years, 7 months ago) by nathans
Branch: MAIN
CVS Tags: HEAD Changes since 1.2: +7 -3
lines
Merge some lost 2.4 differences... not sure what happened to these.
|
/*
pdcraid.c Copyright (C) 2001 Red Hat, Inc. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Authors: Arjan van de Ven <arjanv@redhat.com>
Based on work done by Søren Schmidt for FreeBSD
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/genhd.h>
#include <linux/ioctl.h>
#include <linux/ide.h>
#include <asm/uaccess.h>
#include "ataraid.h"
static int pdcraid_open(struct inode * inode, struct file * filp);
static int pdcraid_release(struct inode * inode, struct file * filp);
static int pdcraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg);
static int pdcraid0_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
static int pdcraid1_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
struct disk_dev {
int major;
int minor;
int device;
};
static struct disk_dev devlist[]= {
{IDE0_MAJOR, 0, -1 },
{IDE0_MAJOR, 64, -1 },
{IDE1_MAJOR, 0, -1 },
{IDE1_MAJOR, 64, -1 },
{IDE2_MAJOR, 0, -1 },
{IDE2_MAJOR, 64, -1 },
{IDE3_MAJOR, 0, -1 },
{IDE3_MAJOR, 64, -1 },
{IDE4_MAJOR, 0, -1 },
{IDE4_MAJOR, 64, -1 },
{IDE5_MAJOR, 0, -1 },
{IDE5_MAJOR, 64, -1 },
{IDE6_MAJOR, 0, -1 },
{IDE6_MAJOR, 64, -1 },
};
struct pdcdisk {
kdev_t device;
unsigned long sectors;
struct block_device *bdev;
unsigned long last_pos;
};
struct pdcraid {
unsigned int stride;
unsigned int disks;
unsigned long sectors;
struct geom geom;
struct pdcdisk disk[8];
unsigned long cutoff[8];
unsigned int cutoff_disks[8];
};
static struct raid_device_operations pdcraid0_ops = {
open: pdcraid_open,
release: pdcraid_release,
ioctl: pdcraid_ioctl,
make_request: pdcraid0_make_request
};
static struct raid_device_operations pdcraid1_ops = {
open: pdcraid_open,
release: pdcraid_release,
ioctl: pdcraid_ioctl,
make_request: pdcraid1_make_request
};
static struct pdcraid raid[16];
static int pdcraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
unsigned int minor;
unsigned long sectors;
if (!inode || !inode->i_rdev)
return -EINVAL;
minor = MINOR(inode->i_rdev)>>SHIFT;
switch (cmd) {
case BLKGETSIZE: /* Return device size */
if (!arg) return -EINVAL;
sectors = ataraid_gendisk.part[MINOR(inode->i_rdev)].nr_sects;
if (MINOR(inode->i_rdev)&15)
return put_user(sectors, (unsigned long *) arg);
return put_user(raid[minor].sectors , (unsigned long *) arg);
break;
case HDIO_GETGEO:
{
struct hd_geometry *loc = (struct hd_geometry *) arg;
unsigned short bios_cyl = raid[minor].geom.cylinders; /* truncate */
if (!loc) return -EINVAL;
if (put_user(raid[minor].geom.heads, (byte *) &loc->heads)) return -EFAULT;
if (put_user(raid[minor].geom.sectors, (byte *) &loc->sectors)) return -EFAULT;
if (put_user(bios_cyl, (unsigned short *) &loc->cylinders)) return -EFAULT;
if (put_user((unsigned)ataraid_gendisk.part[MINOR(inode->i_rdev)].start_sect,
(unsigned long *) &loc->start)) return -EFAULT;
return 0;
}
case HDIO_GETGEO_BIG:
{
struct hd_big_geometry *loc = (struct hd_big_geometry *) arg;
if (!loc) return -EINVAL;
if (put_user(raid[minor].geom.heads, (byte *) &loc->heads)) return -EFAULT;
if (put_user(raid[minor].geom.sectors, (byte *) &loc->sectors)) return -EFAULT;
if (put_user(raid[minor].geom.cylinders, (unsigned int *) &loc->cylinders)) return -EFAULT;
if (put_user((unsigned)ataraid_gendisk.part[MINOR(inode->i_rdev)].start_sect,
(unsigned long *) &loc->start)) return -EFAULT;
return 0;
}
default:
return blk_ioctl(inode->i_rdev, cmd, arg);
};
return 0;
}
static unsigned long partition_map_normal(unsigned long block, unsigned long partition_off, unsigned long partition_size, int stride)
{
return block + partition_off;
}
static int pdcraid0_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
unsigned long rsect;
unsigned long rsect_left,rsect_accum = 0;
unsigned long block;
unsigned int disk=0,real_disk=0;
int i;
int device;
struct pdcraid *thisraid;
rsect = bh->b_rsector;
/* Ok. We need to modify this sector number to a new disk + new sector number.
* If there are disks of different sizes, this gets tricky.
* Example with 3 disks (1Gb, 4Gb and 5 GB):
* The first 3 Gb of the "RAID" are evenly spread over the 3 disks.
* Then things get interesting. The next 2Gb (RAID view) are spread across disk 2 and 3
* and the last 1Gb is disk 3 only.
*
* the way this is solved is like this: We have a list of "cutoff" points where everytime
* a disk falls out of the "higher" count, we mark the max sector. So once we pass a cutoff
* point, we have to divide by one less.
*/
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
thisraid = &raid[device];
if (thisraid->stride==0)
thisraid->stride=1;
/* Partitions need adding of the start sector of the partition to the requested sector */
rsect = partition_map_normal(rsect, ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect, ataraid_gendisk.part[MINOR(bh->b_rdev)].nr_sects, thisraid->stride);
/* Woops we need to split the request to avoid crossing a stride barrier */
if ((rsect/thisraid->stride) != ((rsect+(bh->b_size/512)-1)/thisraid->stride)) {
return -1;
}
rsect_left = rsect;
for (i=0;i<8;i++) {
if (thisraid->cutoff_disks[i]==0)
break;
if (rsect > thisraid->cutoff[i]) {
/* we're in the wrong area so far */
rsect_left -= thisraid->cutoff[i];
rsect_accum += thisraid->cutoff[i]/thisraid->cutoff_disks[i];
} else {
block = rsect_left / thisraid->stride;
disk = block % thisraid->cutoff_disks[i];
block = (block / thisraid->cutoff_disks[i]) * thisraid->stride;
rsect = rsect_accum + (rsect_left % thisraid->stride) + block;
break;
}
}
for (i=0;i<8;i++) {
if ((disk==0) && (thisraid->disk[i].sectors > rsect_accum)) {
real_disk = i;
break;
}
if ((disk>0) && (thisraid->disk[i].sectors >= rsect_accum)) {
disk--;
}
}
disk = real_disk;
/*
* The new BH_Lock semantics in ll_rw_blk.c guarantee that this
* is the only IO operation happening on this bh.
*/
bh->b_rdev = thisraid->disk[disk].device;
bh->b_rsector = rsect;
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int pdcraid1_write_request(request_queue_t *q, int rw, struct buffer_head * bh)
{
struct buffer_head *bh1;
struct ataraid_bh_private *private;
int device;
int i;
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
private = ataraid_get_private();
if (private==NULL)
BUG();
private->parent = bh;
atomic_set(&private->count,raid[device].disks);
for (i = 0; i< raid[device].disks; i++) {
bh1=ataraid_get_bhead();
/* If this ever fails we're doomed */
if (!bh1)
BUG();
/* dupe the bufferhead and update the parts that need to be different */
memcpy(bh1, bh, sizeof(*bh));
bh1->b_end_io = ataraid_end_request;
bh1->b_private = private;
bh1->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect; /* partition offset */
bh1->b_rdev = raid[device].disk[i].device;
/* update the last known head position for the drive */
raid[device].disk[i].last_pos = bh1->b_rsector+(bh1->b_size>>9);
generic_make_request(rw,bh1);
}
return 0;
}
static int pdcraid1_read_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
int device;
int dist;
int bestsofar,bestdist,i;
static int previous;
/* Reads are simple in principle. Pick a disk and go.
Initially I cheat by just picking the one which the last known
head position is closest by.
Later on, online/offline checking and performance needs adding */
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
bh->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect;
bestsofar = 0;
bestdist = raid[device].disk[0].last_pos - bh->b_rsector;
if (bestdist<0)
bestdist=-bestdist;
if (bestdist>4095)
bestdist=4095;
for (i=1 ; i<raid[device].disks; i++) {
dist = raid[device].disk[i].last_pos - bh->b_rsector;
if (dist<0)
dist = -dist;
if (dist>4095)
dist=4095;
if (bestdist==dist) { /* it's a tie; try to do some read balancing */
if ((previous>bestsofar)&&(previous<=i))
bestsofar = i;
previous = (previous + 1) % raid[device].disks;
} else if (bestdist>dist) {
bestdist = dist;
bestsofar = i;
}
}
bh->b_rdev = raid[device].disk[bestsofar].device;
raid[device].disk[bestsofar].last_pos = bh->b_rsector+(bh->b_size>>9);
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int pdcraid1_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
/* Read and Write are totally different cases; split them totally here */
if (rw==READA)
rw = READ;
if (rw==READ)
return pdcraid1_read_request(q,rw,bh);
else
return pdcraid1_write_request(q,rw,bh);
}
#include "pdcraid.h"
static unsigned long calc_pdcblock_offset (int major,int minor)
{
unsigned long lba = 0;
kdev_t dev;
ide_drive_t *ideinfo;
dev = MKDEV(major,minor);
ideinfo = ide_info_ptr (dev, 0);
if (ideinfo==NULL)
return 0;
/* first sector of the last cluster */
if (ideinfo->head==0)
return 0;
if (ideinfo->sect==0)
return 0;
if (ideinfo->head!=255) {
lba = (ideinfo->capacity / (ideinfo->head*ideinfo->sect));
lba = lba * (ideinfo->head*ideinfo->sect);
lba = lba - ideinfo->sect; }
else {
lba = ideinfo->capacity - ideinfo->sect;
}
return lba;
}
static int read_disk_sb (int major, int minor, unsigned char *buffer,int bufsize)
{
int ret = -EINVAL;
struct buffer_head *bh = NULL;
kdev_t dev = MKDEV(major,minor);
unsigned long sb_offset;
if (blksize_size[major]==NULL) /* device doesn't exist */
return -EINVAL;
/*
* Calculate the position of the superblock,
* it's at first sector of the last cylinder
*/
sb_offset = calc_pdcblock_offset(major,minor)/8;
/* The /8 transforms sectors into 4Kb blocks */
if (sb_offset==0)
return -1;
set_blocksize (dev, 4096);
bh = bread (dev, sb_offset, 4096);
if (bh) {
memcpy (buffer, bh->b_data, bufsize);
} else {
printk(KERN_ERR "pdcraid: Error reading superblock.\n");
goto abort;
}
ret = 0;
abort:
if (bh)
brelse (bh);
return ret;
}
static unsigned int calc_sb_csum (unsigned int* ptr)
{
unsigned int sum;
int count;
sum = 0;
for (count=0;count<511;count++)
sum += *ptr++;
return sum;
}
static int cookie = 0;
static void __init probedisk(int devindex,int device, int raidlevel)
{
int i;
int major, minor;
struct promise_raid_conf *prom;
static unsigned char block[4096];
struct block_device *bdev;
if (devlist[devindex].device!=-1) /* already assigned to another array */
return;
major = devlist[devindex].major;
minor = devlist[devindex].minor;
if (read_disk_sb(major,minor,(unsigned char*)&block,sizeof(block)))
return;
prom = (struct promise_raid_conf*)&block[512];
/* the checksums must match */
if (prom->checksum != calc_sb_csum((unsigned int*)prom))
return;
if (prom->raid.type!=raidlevel) /* different raidlevel */
return;
if ((cookie!=0) && (cookie != prom->raid.magic_1)) /* different array */
return;
cookie = prom->raid.magic_1;
/* This looks evil. But basically, we have to search for our adapternumber
in the arraydefinition, both of which are in the superblock */
for (i=0;(i<prom->raid.total_disks)&&(i<8);i++) {
if ( (prom->raid.disk[i].channel== prom->raid.channel) &&
(prom->raid.disk[i].device == prom->raid.device) ) {
bdev = bdget(MKDEV(major,minor));
if (bdev && blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0, BDEV_RAW) == 0) {
raid[device].disk[i].bdev = bdev;
}
raid[device].disk[i].device = MKDEV(major,minor);
raid[device].disk[i].sectors = prom->raid.disk_secs;
raid[device].stride = (1<<prom->raid.raid0_shift);
raid[device].disks = prom->raid.total_disks;
raid[device].sectors = prom->raid.total_secs;
raid[device].geom.heads = prom->raid.heads+1;
raid[device].geom.sectors = prom->raid.sectors;
raid[device].geom.cylinders = prom->raid.cylinders+1;
devlist[devindex].device=device;
}
}
}
static void __init fill_cutoff(int device)
{
int i,j;
unsigned long smallest;
unsigned long bar;
int count;
bar = 0;
for (i=0;i<8;i++) {
smallest = ~0;
for (j=0;j<8;j++)
if ((raid[device].disk[j].sectors < smallest) && (raid[device].disk[j].sectors>bar))
smallest = raid[device].disk[j].sectors;
count = 0;
for (j=0;j<8;j++)
if (raid[device].disk[j].sectors >= smallest)
count++;
smallest = smallest * count;
bar = smallest;
raid[device].cutoff[i] = smallest;
raid[device].cutoff_disks[i] = count;
}
}
static __init int pdcraid_init_one(int device,int raidlevel)
{
int i, count;
for (i=0; i<14; i++)
probedisk(i, device, raidlevel);
if (raidlevel==0)
fill_cutoff(device);
/* Initialize the gendisk structure */
ataraid_register_disk(device,raid[device].sectors);
count=0;
for (i=0;i<8;i++) {
if (raid[device].disk[i].device!=0) {
printk(KERN_INFO "Drive %i is %li Mb (%i / %i) \n",
i,raid[device].disk[i].sectors/2048,MAJOR(raid[device].disk[i].device),MINOR(raid[device].disk[i].device));
count++;
}
}
if (count) {
printk(KERN_INFO "Raid%i array consists of %i drives. \n",raidlevel,count);
return 0;
} else {
return -ENODEV;
}
}
static __init int pdcraid_init(void)
{
int retval, device, count = 0;
do {
cookie = 0;
device=ataraid_get_device(&pdcraid0_ops);
if (device<0)
break;
retval = pdcraid_init_one(device,0);
if (retval) {
ataraid_release_device(device);
break;
} else {
count++;
}
} while (1);
do {
cookie = 0;
device=ataraid_get_device(&pdcraid1_ops);
if (device<0)
break;
retval = pdcraid_init_one(device,1);
if (retval) {
ataraid_release_device(device);
break;
} else {
count++;
}
} while (1);
if (count) {
printk(KERN_INFO "Promise Fasttrak(tm) Softwareraid driver for linux version 0.03beta\n");
return 0;
}
printk(KERN_DEBUG "Promise Fasttrak(tm) Softwareraid driver 0.03beta: No raid array found\n");
return -ENODEV;
}
static void __exit pdcraid_exit (void)
{
int i,device;
for (device = 0; device<16; device++) {
for (i=0;i<8;i++) {
struct block_device *bdev = raid[device].disk[i].bdev;
raid[device].disk[i].bdev = NULL;
if (bdev)
blkdev_put(bdev, BDEV_RAW);
}
if (raid[device].sectors)
ataraid_release_device(device);
}
}
static int pdcraid_open(struct inode * inode, struct file * filp)
{
MOD_INC_USE_COUNT;
return 0;
}
static int pdcraid_release(struct inode * inode, struct file * filp)
{
MOD_DEC_USE_COUNT;
return 0;
}
module_init(pdcraid_init);
module_exit(pdcraid_exit);
MODULE_LICENSE("GPL");