/*
hptraid.c Copyright (C) 2001 Red Hat, Inc. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Authors: Arjan van de Ven <arjanv@redhat.com>
Based on work
Copyleft (C) 2001 by Wilfried Weissmann <wweissmann@gmx.at>
Copyright (C) 1994-96 Marc ZYNGIER <zyngier@ufr-info-p7.ibp.fr>
Based on work done by Søren Schmidt for FreeBSD
Changelog:
15.06.2003 wweissmann@gmx.at
* correct values of raid-1 superbock
* re-add check for availability of all disks
* fix offset bug in raid-1 (introduced in raid 0+1 implementation)
14.06.2003 wweissmann@gmx.at
* superblock has wrong "disks" value on raid-1
* fixup for raid-1 disknumbering
* do _NOT_ align size to 255*63 boundary
I WILL NOT USE FDISK TO DETERMINE THE VOLUME SIZE.
I WILL NOT USE FDISK TO DETERMINE THE VOLUME SIZE.
I WILL NOT USE FDISK TO DETERMINE THE VOLUME SIZE.
I WILL NOT ...
13.06.2003 wweissmann@gmx.at
* raid 0+1 support
* check if all disks of an array are available
* bump version number
29.05.2003 wweissmann@gmx.at
* release no more devices than available on unload
* remove static variables in raid-1 read path
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/genhd.h>
#include <linux/ioctl.h>
#include <linux/ide.h>
#include <asm/uaccess.h>
#include "ataraid.h"
#include "hptraid.h"
static int hptraid_open(struct inode * inode, struct file * filp);
static int hptraid_release(struct inode * inode, struct file * filp);
static int hptraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg);
static int hptraidspan_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
static int hptraid0_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
static int hptraid1_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
static int hptraid01_make_request (request_queue_t *q, int rw, struct buffer_head * bh);
struct hptdisk {
kdev_t device; /* disk-ID/raid 0+1 volume-ID */
unsigned long sectors;
struct block_device *bdev;
unsigned long last_pos;
};
struct hptraid {
unsigned int stride; /* stripesize */
unsigned int disks; /* number of disks in array */
unsigned long sectors; /* disksize in sectors */
u_int32_t magic_0;
u_int32_t magic_1;
struct geom geom;
int previous; /* most recently accessed disk in mirror */
struct hptdisk disk[8];
unsigned long cutoff[8]; /* raid 0 cutoff */
unsigned int cutoff_disks[8];
struct hptraid * raid01; /* sub arrays for raid 0+1 */
};
struct hptraid_dev {
int major;
int minor;
int device;
};
static struct hptraid_dev devlist[]=
{
{IDE0_MAJOR, 0, -1},
{IDE0_MAJOR, 64, -1},
{IDE1_MAJOR, 0, -1},
{IDE1_MAJOR, 64, -1},
{IDE2_MAJOR, 0, -1},
{IDE2_MAJOR, 64, -1},
{IDE3_MAJOR, 0, -1},
{IDE3_MAJOR, 64, -1},
{IDE4_MAJOR, 0, -1},
{IDE4_MAJOR, 64, -1},
{IDE5_MAJOR, 0, -1},
{IDE5_MAJOR, 64, -1},
{IDE6_MAJOR, 0, -1},
{IDE6_MAJOR, 64, -1}
};
static struct raid_device_operations hptraidspan_ops = {
open: hptraid_open,
release: hptraid_release,
ioctl: hptraid_ioctl,
make_request: hptraidspan_make_request
};
static struct raid_device_operations hptraid0_ops = {
open: hptraid_open,
release: hptraid_release,
ioctl: hptraid_ioctl,
make_request: hptraid0_make_request
};
static struct raid_device_operations hptraid1_ops = {
open: hptraid_open,
release: hptraid_release,
ioctl: hptraid_ioctl,
make_request: hptraid1_make_request
};
static struct raid_device_operations hptraid01_ops = {
open: hptraid_open,
release: hptraid_release,
ioctl: hptraid_ioctl,
make_request: hptraid01_make_request
};
static __init struct {
struct raid_device_operations *op;
u_int8_t type;
char label[8];
} oplist[] = {
{&hptraid0_ops, HPT_T_RAID_0, "RAID 0"},
{&hptraid1_ops, HPT_T_RAID_1, "RAID 1"},
{&hptraidspan_ops, HPT_T_SPAN, "SPAN"},
{&hptraid01_ops, HPT_T_RAID_01_RAID_0, "RAID 0+1"},
{0, 0}
};
static struct hptraid raid[14];
static int hptraid_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
unsigned int minor;
unsigned char val;
unsigned long sectors;
if (!inode || !inode->i_rdev)
return -EINVAL;
minor = MINOR(inode->i_rdev)>>SHIFT;
switch (cmd) {
case BLKGETSIZE: /* Return device size */
if (!arg) return -EINVAL;
sectors = ataraid_gendisk.part[MINOR(inode->i_rdev)].nr_sects;
if (MINOR(inode->i_rdev)&15)
return put_user(sectors, (unsigned long *) arg);
return put_user(raid[minor].sectors , (unsigned long *) arg);
break;
case HDIO_GETGEO:
{
struct hd_geometry *loc = (struct hd_geometry *) arg;
unsigned short bios_cyl;
if (!loc) return -EINVAL;
val = 255;
if (put_user(val, (byte *) &loc->heads)) return -EFAULT;
val=63;
if (put_user(val, (byte *) &loc->sectors)) return -EFAULT;
bios_cyl = raid[minor].sectors/63/255;
if (put_user(bios_cyl, (unsigned short *) &loc->cylinders)) return -EFAULT;
if (put_user((unsigned)ataraid_gendisk.part[MINOR(inode->i_rdev)].start_sect,
(unsigned long *) &loc->start)) return -EFAULT;
return 0;
}
case HDIO_GETGEO_BIG:
{
struct hd_big_geometry *loc = (struct hd_big_geometry *) arg;
unsigned int bios_cyl;
if (!loc) return -EINVAL;
val = 255;
if (put_user(val, (byte *) &loc->heads)) return -EFAULT;
val = 63;
if (put_user(val, (byte *) &loc->sectors)) return -EFAULT;
bios_cyl = raid[minor].sectors/63/255;
if (put_user(bios_cyl, (unsigned int *) &loc->cylinders)) return -EFAULT;
if (put_user((unsigned)ataraid_gendisk.part[MINOR(inode->i_rdev)].start_sect,
(unsigned long *) &loc->start)) return -EFAULT;
return 0;
}
default:
return blk_ioctl(inode->i_rdev, cmd, arg);
};
return 0;
}
static int hptraidspan_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
unsigned long rsect;
unsigned int disk;
int device;
struct hptraid *thisraid;
rsect = bh->b_rsector;
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
thisraid = &raid[device];
/*
* Partitions need adding of the start sector of the partition to the
* requested sector
*/
rsect += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect;
for (disk=0;disk<thisraid->disks;disk++) {
if (disk==1)
rsect+=10;
// the "on next disk" contition check is a bit odd
if (thisraid->disk[disk].sectors > rsect+1)
break;
rsect-=thisraid->disk[disk].sectors-(disk?11:1);
}
// request spans over 2 disks => request must be split
if(rsect+bh->b_size/512 >= thisraid->disk[disk].sectors)
return -1;
/*
* The new BH_Lock semantics in ll_rw_blk.c guarantee that this
* is the only IO operation happening on this bh.
*/
bh->b_rdev = thisraid->disk[disk].device;
bh->b_rsector = rsect;
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int hptraid0_compute_request (struct hptraid *thisraid,
request_queue_t *q,
int rw, struct buffer_head * bh)
{
unsigned long rsect_left,rsect_accum = 0;
unsigned long block;
unsigned int disk=0,real_disk=0;
int i;
/* Ok. We need to modify this sector number to a new disk + new sector
* number.
* If there are disks of different sizes, this gets tricky.
* Example with 3 disks (1Gb, 4Gb and 5 GB):
* The first 3 Gb of the "RAID" are evenly spread over the 3 disks.
* Then things get interesting. The next 2Gb (RAID view) are spread
* across disk 2 and 3 and the last 1Gb is disk 3 only.
*
* the way this is solved is like this: We have a list of "cutoff"
* points where everytime a disk falls out of the "higher" count, we
* mark the max sector. So once we pass a cutoff point, we have to
* divide by one less.
*/
if (thisraid->stride==0)
thisraid->stride=1;
/*
* Woops we need to split the request to avoid crossing a stride
* barrier
*/
if ((bh->b_rsector/thisraid->stride) !=
((bh->b_rsector+(bh->b_size/512)-1)/thisraid->stride)) {
return -1;
}
rsect_left = bh->b_rsector;;
for (i=0;i<8;i++) {
if (thisraid->cutoff_disks[i]==0)
break;
if (bh->b_rsector > thisraid->cutoff[i]) {
/* we're in the wrong area so far */
rsect_left -= thisraid->cutoff[i];
rsect_accum += thisraid->cutoff[i] /
thisraid->cutoff_disks[i];
} else {
block = rsect_left / thisraid->stride;
disk = block % thisraid->cutoff_disks[i];
block = (block / thisraid->cutoff_disks[i]) *
thisraid->stride;
bh->b_rsector = rsect_accum +
(rsect_left % thisraid->stride) + block;
break;
}
}
for (i=0;i<8;i++) {
if ((disk==0) && (thisraid->disk[i].sectors > rsect_accum)) {
real_disk = i;
break;
}
if ((disk>0) && (thisraid->disk[i].sectors >= rsect_accum)) {
disk--;
}
}
disk = real_disk;
/* All but the first disk have a 10 sector offset */
if (i>0)
bh->b_rsector+=10;
/*
* The new BH_Lock semantics in ll_rw_blk.c guarantee that this
* is the only IO operation happening on this bh.
*/
bh->b_rdev = thisraid->disk[disk].device;
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int hptraid0_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
unsigned long rsect;
int device;
/*
* save the sector, it must be restored before a request-split
* is performed
*/
rsect = bh->b_rsector;
/*
* Partitions need adding of the start sector of the partition to the
* requested sector
*/
bh->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect;
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
if( hptraid0_compute_request(raid+device, q, rw, bh) != 1 ) {
/* request must be split => restore sector */
bh->b_rsector = rsect;
return -1;
}
return 1;
}
static int hptraid1_read_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
int device;
int dist;
int bestsofar,bestdist,i;
/* Reads are simple in principle. Pick a disk and go.
Initially I cheat by just picking the one which the last known
head position is closest by.
Later on, online/offline checking and performance needs adding */
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
bh->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect;
bestsofar = 0;
bestdist = raid[device].disk[0].last_pos - bh->b_rsector;
if (bestdist<0)
bestdist=-bestdist;
if (bestdist>4095)
bestdist=4095;
for (i=1 ; i<raid[device].disks; i++) {
dist = raid[device].disk[i].last_pos - bh->b_rsector;
if (dist<0)
dist = -dist;
if (dist>4095)
dist=4095;
/* it's a tie; try to do some read balancing */
if (bestdist==dist) {
if ( (raid[device].previous>bestsofar) &&
(raid[device].previous<=i) )
bestsofar = i;
raid[device].previous =
(raid[device].previous + 1) %
raid[device].disks;
} else if (bestdist>dist) {
bestdist = dist;
bestsofar = i;
}
}
bh->b_rdev = raid[device].disk[bestsofar].device;
raid[device].disk[bestsofar].last_pos = bh->b_rsector+(bh->b_size>>9);
/*
* Let the main block layer submit the IO and resolve recursion:
*/
return 1;
}
static int hptraid1_write_request(request_queue_t *q, int rw, struct buffer_head * bh)
{
struct buffer_head *bh1;
struct ataraid_bh_private *private;
int device;
int i;
device = (bh->b_rdev >> SHIFT)&MAJOR_MASK;
private = ataraid_get_private();
if (private==NULL)
BUG();
private->parent = bh;
atomic_set(&private->count,raid[device].disks);
for (i = 0; i< raid[device].disks; i++) {
bh1=ataraid_get_bhead();
/* If this ever fails we're doomed */
if (!bh1)
BUG();
/*
* dupe the bufferhead and update the parts that need to be
* different
*/
memcpy(bh1, bh, sizeof(*bh));
bh1->b_end_io = ataraid_end_request;
bh1->b_private = private;
bh1->b_rsector += ataraid_gendisk.part[MINOR(bh->b_rdev)].start_sect; /* partition offset */
bh1->b_rdev = raid[device].disk[i].device;
/* update the last known head position for the drive */
raid[device].disk[i].last_pos = bh1->b_rsector+(bh1->b_size>>9);
if( raid[device].raid01 ) {
if( hptraid0_compute_request(
raid[device].raid01 +
(bh1->b_rdev-1),
q, rw, bh1) != 1 ) {
/*
* If a split is requested then it is requested
* in the first iteration. This is true because
* of the cutoff is not used in raid 0+1.
*/
if(unlikely(i)) {
BUG();
}
else {
kfree(private);
return -1;
}
}
}
generic_make_request(rw,bh1);
}
return 0;
}
static int hptraid1_make_request (request_queue_t *q, int rw, struct buffer_head * bh) {
/*
* Read and Write are totally different cases; split them totally
* here
*/
if (rw==READA)
rw = READ;
if (rw==READ)
return hptraid1_read_request(q,rw,bh);
else
return hptraid1_write_request(q,rw,bh);
}
static int hptraid01_read_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
int rsector=bh->b_rsector;
int rdev=bh->b_rdev;
/* select mirror volume */
hptraid1_read_request(q, rw, bh);
/* stripe volume is selected by "bh->b_rdev" */
if( hptraid0_compute_request(
raid[(bh->b_rdev >> SHIFT)&MAJOR_MASK].
raid01 + (bh->b_rdev-1) ,
q, rw, bh) != 1 ) {
/* request must be split => restore sector and device */
bh->b_rsector = rsector;
bh->b_rdev = rdev;
return -1;
}
return 1;
}
static int hptraid01_make_request (request_queue_t *q, int rw, struct buffer_head * bh) {
/*
* Read and Write are totally different cases; split them totally
* here
*/
if (rw==READA)
rw = READ;
if (rw==READ)
return hptraid01_read_request(q,rw,bh);
else
return hptraid1_write_request(q,rw,bh);
}
static int read_disk_sb (int major, int minor, unsigned char *buffer,int bufsize)
{
int ret = -EINVAL;
struct buffer_head *bh = NULL;
kdev_t dev = MKDEV(major,minor);
if (blksize_size[major]==NULL) /* device doesn't exist */
return -EINVAL;
/* Superblock is at 4096+412 bytes */
set_blocksize (dev, 4096);
bh = bread (dev, 1, 4096);
if (bh) {
memcpy (buffer, bh->b_data, bufsize);
} else {
printk(KERN_ERR "hptraid: Error reading superblock.\n");
goto abort;
}
ret = 0;
abort:
if (bh)
brelse (bh);
return ret;
}
static unsigned long maxsectors (int major,int minor)
{
unsigned long lba = 0;
kdev_t dev;
ide_drive_t *ideinfo;
dev = MKDEV(major,minor);
ideinfo = ide_info_ptr (dev, 0);
if (ideinfo==NULL)
return 0;
/* first sector of the last cluster */
if (ideinfo->head==0)
return 0;
if (ideinfo->sect==0)
return 0;
lba = (ideinfo->capacity);
return lba;
}
static void writeentry(struct hptraid * raid, struct hptraid_dev * disk,
int index, struct highpoint_raid_conf * prom) {
int j=0;
struct gendisk *gd;
struct block_device *bdev;
bdev = bdget(MKDEV(disk->major,disk->minor));
if (bdev && blkdev_get(bdev,FMODE_READ|FMODE_WRITE,0,BDEV_RAW) == 0) {
raid->disk[index].bdev = bdev;
/*
* This is supposed to prevent others from stealing our
* underlying disks now blank the /proc/partitions table for
* the wrong partition table, so that scripts don't
* accidentally mount it and crash the kernel
*/
/* XXX: the 0 is an utter hack --hch */
gd=get_gendisk(MKDEV(disk->major, 0));
if (gd!=NULL) {
if (gd->major==disk->major)
for (j=1+(disk->minor<<gd->minor_shift);
j<((disk->minor+1)<<gd->minor_shift);
j++) gd->part[j].nr_sects=0;
}
}
raid->disk[index].device = MKDEV(disk->major,disk->minor);
raid->disk[index].sectors = maxsectors(disk->major,disk->minor);
raid->stride = (1<<prom->raid0_shift);
raid->disks = prom->raid_disks;
raid->sectors = prom->total_secs;
raid->sectors += raid->sectors&1?1:0;
raid->magic_0=prom->magic_0;
raid->magic_1=prom->magic_1;
}
static int probedisk(struct hptraid_dev *disk, int device, u_int8_t type)
{
int i, j;
struct highpoint_raid_conf *prom;
static unsigned char block[4096];
if (disk->device != -1) /* disk is occupied? */
return 0;
if (maxsectors(disk->major,disk->minor)==0)
return 0;
if (read_disk_sb(disk->major,disk->minor,(unsigned char*)&block,sizeof(block)))
return 0;
prom = (struct highpoint_raid_conf*)&block[512];
if (prom->magic!= 0x5a7816f0)
return 0;
switch (prom->type) {
case HPT_T_SPAN:
case HPT_T_RAID_0:
case HPT_T_RAID_1:
case HPT_T_RAID_01_RAID_0:
if(prom->type != type)
return 0;
break;
default:
printk(KERN_INFO "hptraid: unknown raid level-id %i\n",
prom->type);
return 0;
}
/* disk from another array? */
if (raid[device].disks) { /* only check if raid is not empty */
if (type == HPT_T_RAID_01_RAID_0 ) {
if( prom->magic_1 != raid[device].magic_1) {
return 0;
}
}
else if (prom->magic_0 != raid[device].magic_0) {
return 0;
}
}
i = prom->disk_number;
if (i<0)
return 0;
if (i>8)
return 0;
if ( type == HPT_T_RAID_01_RAID_0 ) {
/* allocate helper raid devices for level 0+1 */
if (raid[device].raid01 == NULL ) {
raid[device].raid01=
kmalloc(2 * sizeof(struct hptraid),GFP_KERNEL);
if ( raid[device].raid01 == NULL ) {
printk(KERN_ERR "hptraid: out of memory\n");
raid[device].disks=-1;
return -ENOMEM;
}
memset(raid[device].raid01, 0,
2 * sizeof(struct hptraid));
}
/* find free sub-stucture */
for (j=0; j<2; j++) {
if ( raid[device].raid01[j].disks == 0 ||
raid[device].raid01[j].magic_0 == prom->magic_0 )
{
writeentry(raid[device].raid01+j, disk,
i, prom);
break;
}
}
/* no free slot */
if(j == 2)
return 0;
raid[device].stride=raid[device].raid01[j].stride;
raid[device].disks=j+1;
raid[device].sectors=raid[device].raid01[j].sectors;
raid[device].disk[j].sectors=raid[device].raid01[j].sectors;
raid[device].magic_1=prom->magic_1;
}
else {
writeentry(raid+device, disk, i, prom);
}
disk->device=device;
return 1;
}
static void fill_cutoff(struct hptraid * device)
{
int i,j;
unsigned long smallest;
unsigned long bar;
int count;
bar = 0;
for (i=0;i<8;i++) {
smallest = ~0;
for (j=0;j<8;j++)
if ((device->disk[j].sectors < smallest) && (device->disk[j].sectors>bar))
smallest = device->disk[j].sectors;
count = 0;
for (j=0;j<8;j++)
if (device->disk[j].sectors >= smallest)
count++;
smallest = smallest * count;
bar = smallest;
device->cutoff[i] = smallest;
device->cutoff_disks[i] = count;
}
}
static int count_disks(struct hptraid * raid) {
int i, count=0;
for (i=0;i<8;i++) {
if (raid->disk[i].device!=0) {
printk(KERN_INFO "Drive %i is %li Mb \n",
i,raid->disk[i].sectors/2048);
count++;
}
}
return count;
}
static void raid1_fixup(struct hptraid * raid) {
int i, count=0;
for (i=0;i<8;i++) {
/* disknumbers and total disks values are bogus */
if (raid->disk[i].device!=0) {
raid->disk[count]=raid->disk[i];
if(i > count) {
memset(raid->disk+i, 0, sizeof(struct hptdisk));
}
count++;
}
}
raid->disks=count;
}
static int hptraid_init_one(int device, u_int8_t type, const char * label)
{
int i,count;
memset(raid+device, 0, sizeof(struct hptraid));
for (i=0; i < 14; i++) {
if( probedisk(devlist+i, device, type) < 0 )
return -EINVAL;
}
/* Initialize raid levels */
switch (type) {
case HPT_T_RAID_0:
fill_cutoff(raid+device);
break;
case HPT_T_RAID_1:
raid1_fixup(raid+device);
break;
case HPT_T_RAID_01_RAID_0:
for(i=0; i < 2 && raid[device].raid01 &&
raid[device].raid01[i].disks; i++) {
fill_cutoff(raid[device].raid01+i);
/* initialize raid 0+1 volumes */
raid[device].disk[i].device=i+1;
}
break;
}
/* Initialize the gendisk structure */
ataraid_register_disk(device,raid[device].sectors);
/* Verify that we have all disks */
count=count_disks(raid+device);
if (count != raid[device].disks) {
printk(KERN_INFO "%s consists of %i drives but found %i drives\n",
label, raid[device].disks, count);
return -ENODEV;
}
else if (count) {
printk(KERN_INFO "%s consists of %i drives.\n",
label, count);
if (type == HPT_T_RAID_01_RAID_0 ) {
for(i=0;i<raid[device].disks;i++) {
count=count_disks(raid[device].raid01+i);
if(count == raid[device].raid01[i].disks) {
printk(KERN_ERR "Sub-Raid %i array consists of %i drives.\n",
i, count);
}
else {
printk(KERN_ERR "Sub-Raid %i array consists of %i drives but found %i disk members.\n",
i, raid[device].raid01[i].disks,
count);
return -ENODEV;
}
}
}
return 0;
}
return -ENODEV; /* No more raid volumes */
}
static int hptraid_init(void)
{
int retval=-ENODEV;
int device,i,count=0;
printk(KERN_INFO "Highpoint HPT370 Softwareraid driver for linux version 0.02\n");
for(i=0; oplist[i].op; i++) {
do
{
device=ataraid_get_device(oplist[i].op);
if (device<0)
return (count?0:-ENODEV);
retval = hptraid_init_one(device, oplist[i].type,
oplist[i].label);
if (retval)
ataraid_release_device(device);
else
count++;
} while(!retval);
}
return (count?0:retval);
}
static void __exit hptraid_exit (void)
{
int i,device;
for (device = 0; device<14; device++) {
for (i=0;i<8;i++) {
struct block_device *bdev = raid[device].disk[i].bdev;
raid[device].disk[i].bdev = NULL;
if (bdev)
blkdev_put(bdev, BDEV_RAW);
}
if (raid[device].sectors) {
ataraid_release_device(device);
if( raid[device].raid01 ) {
kfree(raid[device].raid01);
}
}
}
}
static int hptraid_open(struct inode * inode, struct file * filp)
{
MOD_INC_USE_COUNT;
return 0;
}
static int hptraid_release(struct inode * inode, struct file * filp)
{
MOD_DEC_USE_COUNT;
return 0;
}
module_init(hptraid_init);
module_exit(hptraid_exit);
MODULE_LICENSE("GPL");