/*
ataraid.c Copyright (C) 2001 Red Hat, Inc. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Authors: Arjan van de Ven <arjanv@redhat.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/semaphore.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/genhd.h>
#include <linux/ioctl.h>
#include <linux/kdev_t.h>
#include <linux/swap.h>
#include <linux/ide.h>
#include <asm/uaccess.h>
#include "ataraid.h"
static int ataraid_hardsect_size[256];
static int ataraid_blksize_size[256];
static struct raid_device_operations* ataraid_ops[16];
static int ataraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg);
static int ataraid_open(struct inode * inode, struct file * filp);
static int ataraid_release(struct inode * inode, struct file * filp);
static void ataraid_split_request(request_queue_t *q, int rw, struct buffer_head * bh);
struct gendisk ataraid_gendisk;
static int ataraid_gendisk_sizes[256];
static int ataraid_readahead[256];
static struct block_device_operations ataraid_fops = {
owner: THIS_MODULE,
open: ataraid_open,
release: ataraid_release,
ioctl: ataraid_ioctl,
};
static DECLARE_MUTEX(ataraid_sem);
/* Bitmap for the devices currently in use */
static unsigned int ataraiduse;
/* stub fops functions */
static int ataraid_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
int minor;
minor = MINOR(inode->i_rdev)>>SHIFT;
if ((ataraid_ops[minor])&&(ataraid_ops[minor]->ioctl))
return (ataraid_ops[minor]->ioctl)(inode,file,cmd,arg);
return -EINVAL;
}
static int ataraid_open(struct inode * inode, struct file * filp)
{
int minor;
minor = MINOR(inode->i_rdev)>>SHIFT;
if ((ataraid_ops[minor])&&(ataraid_ops[minor]->open))
return (ataraid_ops[minor]->open)(inode,filp);
return -EINVAL;
}
static int ataraid_release(struct inode * inode, struct file * filp)
{
int minor;
minor = MINOR(inode->i_rdev)>>SHIFT;
if ((ataraid_ops[minor])&&(ataraid_ops[minor]->release))
return (ataraid_ops[minor]->release)(inode,filp);
return -EINVAL;
}
static int ataraid_make_request (request_queue_t *q, int rw, struct buffer_head * bh)
{
int minor;
int retval;
minor = MINOR(bh->b_rdev)>>SHIFT;
if ((ataraid_ops[minor])&&(ataraid_ops[minor]->make_request)) {
retval= (ataraid_ops[minor]->make_request)(q,rw,bh);
if (retval == -1) {
ataraid_split_request(q,rw,bh);
return 0;
} else
return retval;
}
return -EINVAL;
}
struct buffer_head *ataraid_get_bhead(void)
{
void *ptr = NULL;
while (!ptr) {
ptr=kmalloc(sizeof(struct buffer_head),GFP_NOIO);
if (!ptr) {
__set_current_state(TASK_RUNNING);
yield();
}
}
return ptr;
}
EXPORT_SYMBOL(ataraid_get_bhead);
struct ataraid_bh_private *ataraid_get_private(void)
{
void *ptr = NULL;
while (!ptr) {
ptr=kmalloc(sizeof(struct ataraid_bh_private),GFP_NOIO);
if (!ptr) {
__set_current_state(TASK_RUNNING);
yield();
}
}
return ptr;
}
EXPORT_SYMBOL(ataraid_get_private);
void ataraid_end_request(struct buffer_head *bh, int uptodate)
{
struct ataraid_bh_private *private = bh->b_private;
if (private==NULL)
BUG();
if (atomic_dec_and_test(&private->count)) {
private->parent->b_end_io(private->parent,uptodate);
private->parent = NULL;
kfree(private);
}
kfree(bh);
}
EXPORT_SYMBOL(ataraid_end_request);
static void ataraid_split_request(request_queue_t *q, int rw, struct buffer_head * bh)
{
struct buffer_head *bh1,*bh2;
struct ataraid_bh_private *private;
bh1=ataraid_get_bhead();
bh2=ataraid_get_bhead();
/* If either of those ever fails we're doomed */
if ((!bh1)||(!bh2))
BUG();
private = ataraid_get_private();
if (private==NULL)
BUG();
memcpy(bh1, bh, sizeof(*bh));
memcpy(bh2, bh, sizeof(*bh));
bh1->b_end_io = ataraid_end_request;
bh2->b_end_io = ataraid_end_request;
bh2->b_rsector += bh->b_size >> 10;
bh1->b_size /= 2;
bh2->b_size /= 2;
private->parent = bh;
bh1->b_private = private;
bh2->b_private = private;
atomic_set(&private->count,2);
bh2->b_data += bh->b_size/2;
generic_make_request(rw,bh1);
generic_make_request(rw,bh2);
}
/* device register / release functions */
int ataraid_get_device(struct raid_device_operations *fops)
{
int bit;
down(&ataraid_sem);
if (ataraiduse==~0U) {
up(&ataraid_sem);
return -ENODEV;
}
bit=ffz(ataraiduse);
ataraiduse |= 1<<bit;
ataraid_ops[bit] = fops;
up(&ataraid_sem);
return bit;
}
void ataraid_release_device(int device)
{
down(&ataraid_sem);
if ((ataraiduse & (1<<device))==0)
BUG(); /* device wasn't registered at all */
ataraiduse &= ~(1<<device);
ataraid_ops[device] = NULL;
up(&ataraid_sem);
}
void ataraid_register_disk(int device,long size)
{
register_disk(&ataraid_gendisk, MKDEV(ATAMAJOR,16*device),16,
&ataraid_fops,size);
}
static __init int ataraid_init(void)
{
int i;
for(i=0;i<256;i++)
{
ataraid_hardsect_size[i] = 512;
ataraid_blksize_size[i] = 1024;
ataraid_readahead[i] = 1023;
}
if (blksize_size[ATAMAJOR]==NULL)
blksize_size[ATAMAJOR] = ataraid_blksize_size;
if (hardsect_size[ATAMAJOR]==NULL)
hardsect_size[ATAMAJOR] = ataraid_hardsect_size;
/* setup the gendisk structure */
ataraid_gendisk.part = kmalloc(256 * sizeof(struct hd_struct),GFP_KERNEL);
if (ataraid_gendisk.part==NULL) {
printk(KERN_ERR "ataraid: Couldn't allocate memory, aborting \n");
return -1;
}
memset(&ataraid_gendisk.part[0],0,256*sizeof(struct hd_struct));
ataraid_gendisk.major = ATAMAJOR;
ataraid_gendisk.major_name = "ataraid";
ataraid_gendisk.minor_shift = 4;
ataraid_gendisk.max_p = 15;
ataraid_gendisk.sizes = &ataraid_gendisk_sizes[0];
ataraid_gendisk.nr_real = 16;
ataraid_gendisk.fops = &ataraid_fops;
add_gendisk(&ataraid_gendisk);
if (register_blkdev(ATAMAJOR, "ataraid", &ataraid_fops)) {
printk(KERN_ERR "ataraid: Could not get major %d \n",ATAMAJOR);
return -1;
}
blk_queue_make_request(BLK_DEFAULT_QUEUE(ATAMAJOR),ataraid_make_request);
return 0;
}
static void __exit ataraid_exit(void)
{
unregister_blkdev(ATAMAJOR, "ataraid");
hardsect_size[ATAMAJOR] = NULL;
blk_size[ATAMAJOR] = NULL;
blksize_size[ATAMAJOR] = NULL;
max_readahead[ATAMAJOR] = NULL;
del_gendisk(&ataraid_gendisk);
if (ataraid_gendisk.part) {
kfree(ataraid_gendisk.part);
ataraid_gendisk.part = NULL;
}
}
module_init(ataraid_init);
module_exit(ataraid_exit);
EXPORT_SYMBOL(ataraid_get_device);
EXPORT_SYMBOL(ataraid_release_device);
EXPORT_SYMBOL(ataraid_gendisk);
EXPORT_SYMBOL(ataraid_register_disk);
MODULE_LICENSE("GPL");