/*
* linux/drivers/ide/ppc/pmac.c
*
* Support for IDE interfaces on PowerMacs.
* These IDE interfaces are memory-mapped and have a DBDMA channel
* for doing DMA.
*
* Copyright (C) 1998-2002 Paul Mackerras & Ben. Herrenschmidt
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Some code taken from drivers/ide/ide-dma.c:
*
* Copyright (c) 1995-1998 Mark Lord
*
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/pci.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/dbdma.h>
#include <asm/ide.h>
#include <asm/mediabay.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/sections.h>
#include <asm/irq.h>
#ifdef CONFIG_PMAC_PBOOK
#include <linux/adb.h>
#include <linux/pmu.h>
#endif
#include "ide_modes.h"
#include "ide-timing.h"
extern void ide_do_request(ide_hwgroup_t *hwgroup, int masked_irq);
#undef IDE_PMAC_DEBUG
#define DMA_WAIT_TIMEOUT 100
typedef struct pmac_ide_hwif {
ide_ioreg_t regbase;
unsigned long mapbase;
int irq;
int kind;
int aapl_bus_id;
int cable_80;
struct device_node* node;
u32 timings[4];
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
/* Those fields are duplicating what is in hwif. We currently
* can't use the hwif ones because of some assumptions that are
* beeing done by the generic code about the kind of dma controller
* and format of the dma table. This will have to be fixed though.
*/
volatile struct dbdma_regs* dma_regs;
struct dbdma_cmd* dma_table_cpu;
dma_addr_t dma_table_dma;
struct scatterlist* sg_table;
int sg_nents;
int sg_dma_direction;
#endif
} pmac_ide_hwif_t;
static pmac_ide_hwif_t pmac_ide[MAX_HWIFS] __pmacdata;
static int pmac_ide_count;
enum {
controller_ohare, /* OHare based */
controller_heathrow, /* Heathrow/Paddington */
controller_kl_ata3, /* KeyLargo ATA-3 */
controller_kl_ata4, /* KeyLargo ATA-4 */
controller_un_ata6 /* UniNorth2 ATA-6 */
};
static const char* model_name[] = {
"OHare ATA", /* OHare based */
"Heathrow ATA", /* Heathrow/Paddington */
"KeyLargo ATA-3", /* KeyLargo ATA-3 */
"KeyLargo ATA-4", /* KeyLargo ATA-4 */
"UniNorth ATA-6" /* UniNorth2 ATA-6 */
};
/*
* Extra registers, both 32-bit little-endian
*/
#define IDE_TIMING_CONFIG 0x200
#define IDE_INTERRUPT 0x300
/* Kauai (U2) ATA has different register setup */
#define IDE_KAUAI_PIO_CONFIG 0x200
#define IDE_KAUAI_ULTRA_CONFIG 0x210
#define IDE_KAUAI_POLL_CONFIG 0x220
/*
* Timing configuration register definitions
*/
/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
#define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
#define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
#define IDE_SYSCLK_NS 30 /* 33Mhz cell */
#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
* this one yet, it appears as a pci device (106b/0033) on uninorth
* internal PCI bus and it's clock is controlled like gem or fw. It
* appears to be an evolution of keylargo ATA4 with a timing register
* extended to 2 32bits registers and a similar DBDMA channel. Other
* registers seem to exist but I can't tell much about them.
*
* So far, I'm using pre-calculated tables for this extracted from
* the values used by the MacOS X driver.
*
* The "PIO" register controls PIO and MDMA timings, the "ULTRA"
* register controls the UDMA timings. At least, it seems bit 0
* of this one enables UDMA vs. MDMA, and bits 4..7 are the
* cycle time in units of 10ns. Bits 8..15 are used by I don't
* know their meaning yet
*/
#define TR_100_PIOREG_PIO_MASK 0xff000fff
#define TR_100_PIOREG_MDMA_MASK 0x00fff000
#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
#define TR_100_UDMAREG_UDMA_EN 0x00000001
/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
* 40 connector cable and to 4 on 80 connector one.
* Clock unit is 15ns (66Mhz)
*
* 3 Values can be programmed:
* - Write data setup, which appears to match the cycle time. They
* also call it DIOW setup.
* - Ready to pause time (from spec)
* - Address setup. That one is weird. I don't see where exactly
* it fits in UDMA cycles, I got it's name from an obscure piece
* of commented out code in Darwin. They leave it to 0, we do as
* well, despite a comment that would lead to think it has a
* min value of 45ns.
* Apple also add 60ns to the write data setup (or cycle time ?) on
* reads.
*/
#define TR_66_UDMA_MASK 0xfff00000
#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
#define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
#define TR_66_UDMA_ADDRSETUP_SHIFT 29
#define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
#define TR_66_UDMA_RDY2PAUS_SHIFT 25
#define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
#define TR_66_UDMA_WRDATASETUP_SHIFT 21
#define TR_66_MDMA_MASK 0x000ffc00
#define TR_66_MDMA_RECOVERY_MASK 0x000f8000
#define TR_66_MDMA_RECOVERY_SHIFT 15
#define TR_66_MDMA_ACCESS_MASK 0x00007c00
#define TR_66_MDMA_ACCESS_SHIFT 10
#define TR_66_PIO_MASK 0x000003ff
#define TR_66_PIO_RECOVERY_MASK 0x000003e0
#define TR_66_PIO_RECOVERY_SHIFT 5
#define TR_66_PIO_ACCESS_MASK 0x0000001f
#define TR_66_PIO_ACCESS_SHIFT 0
/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
* Can do pio & mdma modes, clock unit is 30ns (33Mhz)
*
* The access time and recovery time can be programmed. Some older
* Darwin code base limit OHare to 150ns cycle time. I decided to do
* the same here fore safety against broken old hardware ;)
* The HalfTick bit, when set, adds half a clock (15ns) to the access
* time and removes one from recovery. It's not supported on KeyLargo
* implementation afaik. The E bit appears to be set for PIO mode 0 and
* is used to reach long timings used in this mode.
*/
#define TR_33_MDMA_MASK 0x003ff800
#define TR_33_MDMA_RECOVERY_MASK 0x001f0000
#define TR_33_MDMA_RECOVERY_SHIFT 16
#define TR_33_MDMA_ACCESS_MASK 0x0000f800
#define TR_33_MDMA_ACCESS_SHIFT 11
#define TR_33_MDMA_HALFTICK 0x00200000
#define TR_33_PIO_MASK 0x000007ff
#define TR_33_PIO_E 0x00000400
#define TR_33_PIO_RECOVERY_MASK 0x000003e0
#define TR_33_PIO_RECOVERY_SHIFT 5
#define TR_33_PIO_ACCESS_MASK 0x0000001f
#define TR_33_PIO_ACCESS_SHIFT 0
/*
* Interrupt register definitions
*/
#define IDE_INTR_DMA 0x80000000
#define IDE_INTR_DEVICE 0x40000000
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
/* Rounded Multiword DMA timings
*
* I gave up finding a generic formula for all controller
* types and instead, built tables based on timing values
* used by Apple in Darwin's implementation.
*/
struct mdma_timings_t {
int accessTime;
int recoveryTime;
int cycleTime;
};
struct mdma_timings_t mdma_timings_33[] __pmacdata =
{
{ 240, 240, 480 },
{ 180, 180, 360 },
{ 135, 135, 270 },
{ 120, 120, 240 },
{ 105, 105, 210 },
{ 90, 90, 180 },
{ 75, 75, 150 },
{ 75, 45, 120 },
{ 0, 0, 0 }
};
struct mdma_timings_t mdma_timings_33k[] __pmacdata =
{
{ 240, 240, 480 },
{ 180, 180, 360 },
{ 150, 150, 300 },
{ 120, 120, 240 },
{ 90, 120, 210 },
{ 90, 90, 180 },
{ 90, 60, 150 },
{ 90, 30, 120 },
{ 0, 0, 0 }
};
struct mdma_timings_t mdma_timings_66[] __pmacdata =
{
{ 240, 240, 480 },
{ 180, 180, 360 },
{ 135, 135, 270 },
{ 120, 120, 240 },
{ 105, 105, 210 },
{ 90, 90, 180 },
{ 90, 75, 165 },
{ 75, 45, 120 },
{ 0, 0, 0 }
};
/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
struct {
int addrSetup; /* ??? */
int rdy2pause;
int wrDataSetup;
} kl66_udma_timings[] __pmacdata =
{
{ 0, 180, 120 }, /* Mode 0 */
{ 0, 150, 90 }, /* 1 */
{ 0, 120, 60 }, /* 2 */
{ 0, 90, 45 }, /* 3 */
{ 0, 90, 30 } /* 4 */
};
/* UniNorth 2 ATA/100 timings */
struct kauai_timing {
int cycle_time;
u32 timing_reg;
};
static struct kauai_timing kauai_pio_timings[] __pmacdata =
{
{ 930 , 0x08000fff },
{ 600 , 0x08000a92 },
{ 383 , 0x0800060f },
{ 360 , 0x08000492 },
{ 330 , 0x0800048f },
{ 300 , 0x080003cf },
{ 270 , 0x080003cc },
{ 240 , 0x0800038b },
{ 239 , 0x0800030c },
{ 180 , 0x05000249 },
{ 120 , 0x04000148 }
};
static struct kauai_timing kauai_mdma_timings[] __pmacdata =
{
{ 1260 , 0x00fff000 },
{ 480 , 0x00618000 },
{ 360 , 0x00492000 },
{ 270 , 0x0038e000 },
{ 240 , 0x0030c000 },
{ 210 , 0x002cb000 },
{ 180 , 0x00249000 },
{ 150 , 0x00209000 },
{ 120 , 0x00148000 },
{ 0 , 0 },
};
static struct kauai_timing kauai_udma_timings[] __pmacdata =
{
{ 120 , 0x000070c0 },
{ 90 , 0x00005d80 },
{ 60 , 0x00004a60 },
{ 45 , 0x00003a50 },
{ 30 , 0x00002a30 },
{ 20 , 0x00002921 },
{ 0 , 0 },
};
static inline u32
kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
{
int i;
for (i=0; table[i].cycle_time; i++)
if (cycle_time > table[i+1].cycle_time)
return table[i].timing_reg;
return 0;
}
/* allow up to 256 DBDMA commands per xfer */
#define MAX_DCMDS 256
/* Wait 2s for disk to answer on IDE bus after
* enable operation.
* NOTE: There is at least one case I know of a disk that needs about 10sec
* before anwering on the bus. I beleive we could add a kernel command
* line arg to override this delay for such cases.
*
* NOTE2: This has to be fixed with a BSY wait loop. I'm working on adding
* that to the generic probe code.
*/
#define IDE_WAKEUP_DELAY_MS 2000
static void pmac_ide_setup_dma(struct device_node *np, int ix);
static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq, int ddir);
static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
static void pmac_ide_selectproc(ide_drive_t *drive);
static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
static int pmac_ide_dma_begin (ide_drive_t *drive);
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
#ifdef CONFIG_PMAC_PBOOK
static int idepmac_notify_sleep(struct pmu_sleep_notifier *self, int when);
struct pmu_sleep_notifier idepmac_sleep_notifier = {
idepmac_notify_sleep, SLEEP_LEVEL_BLOCK,
};
#endif /* CONFIG_PMAC_PBOOK */
/*
* N.B. this can't be an initfunc, because the media-bay task can
* call ide_[un]register at any time.
*/
void __pmac
pmac_ide_init_hwif_ports(hw_regs_t *hw,
ide_ioreg_t data_port, ide_ioreg_t ctrl_port,
int *irq)
{
int i, ix;
if (data_port == 0)
return;
for (ix = 0; ix < MAX_HWIFS; ++ix)
if (data_port == pmac_ide[ix].regbase)
break;
if (ix >= MAX_HWIFS) {
/* Probably a PCI interface... */
for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
return;
}
for (i = 0; i < 8; ++i)
hw->io_ports[i] = data_port + i * 0x10;
hw->io_ports[8] = data_port + 0x160;
if (irq != NULL)
*irq = pmac_ide[ix].irq;
}
/* Setup timings for the selected drive (master/slave). I still need to verify if this
* is enough, I beleive selectproc will be called whenever an IDE command is started,
* but... */
static void __pmac
pmac_ide_selectproc(ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
if (pmif == NULL)
return;
if (drive->select.b.unit & 0x01)
writel(pmif->timings[1],
(unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
else
writel(pmif->timings[0],
(unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
(void)readl((unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
}
static void __pmac
pmac_ide_kauai_selectproc(ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
if (pmif == NULL)
return;
if (drive->select.b.unit & 0x01) {
writel(pmif->timings[1],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_PIO_CONFIG));
writel(pmif->timings[3],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_ULTRA_CONFIG));
} else {
writel(pmif->timings[0],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_PIO_CONFIG));
writel(pmif->timings[2],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_ULTRA_CONFIG));
}
(void)readl((unsigned *)(IDE_DATA_REG + IDE_KAUAI_PIO_CONFIG));
}
static void __pmac
pmac_ide_do_update_timings(ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
if (pmif == NULL)
return;
if (pmif->kind == controller_un_ata6)
pmac_ide_kauai_selectproc(drive);
else
pmac_ide_selectproc(drive);
}
static void
pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
{
u32 tmp;
writeb(value, port);
tmp = readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG));
}
static int __pmac
pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
{
ide_hwif_t *hwif = HWIF(drive);
int result = 1;
disable_irq(hwif->irq); /* disable_irq_nosync ?? */
udelay(1);
SELECT_DRIVE(drive);
SELECT_MASK(drive, 0);
udelay(1);
/* Get rid of pending error state */
(void)hwif->INB(IDE_STATUS_REG);
/* Timeout bumped for some powerbooks */
if (wait_for_ready(drive, 2000)) {
/* Timeout bumped for some powerbooks */
printk(KERN_ERR "pmac_ide_do_setfeature disk not ready "
"before SET_FEATURE!\n");
goto out;
}
udelay(10);
hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
hwif->OUTB(command, IDE_NSECTOR_REG);
hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
udelay(1);
/* Timeout bumped for some powerbooks */
result = wait_for_ready(drive, 2000);
hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
if (result)
printk(KERN_ERR "pmac_ide_do_setfeature disk not ready "
"after SET_FEATURE !\n");
out:
SELECT_MASK(drive, 0);
if (result == 0) {
drive->id->dma_ultra &= ~0xFF00;
drive->id->dma_mword &= ~0x0F00;
drive->id->dma_1word &= ~0x0F00;
switch(command) {
case XFER_UDMA_7:
drive->id->dma_ultra |= 0x8080; break;
case XFER_UDMA_6:
drive->id->dma_ultra |= 0x4040; break;
case XFER_UDMA_5:
drive->id->dma_ultra |= 0x2020; break;
case XFER_UDMA_4:
drive->id->dma_ultra |= 0x1010; break;
case XFER_UDMA_3:
drive->id->dma_ultra |= 0x0808; break;
case XFER_UDMA_2:
drive->id->dma_ultra |= 0x0404; break;
case XFER_UDMA_1:
drive->id->dma_ultra |= 0x0202; break;
case XFER_UDMA_0:
drive->id->dma_ultra |= 0x0101; break;
case XFER_MW_DMA_2:
drive->id->dma_mword |= 0x0404; break;
case XFER_MW_DMA_1:
drive->id->dma_mword |= 0x0202; break;
case XFER_MW_DMA_0:
drive->id->dma_mword |= 0x0101; break;
case XFER_SW_DMA_2:
drive->id->dma_1word |= 0x0404; break;
case XFER_SW_DMA_1:
drive->id->dma_1word |= 0x0202; break;
case XFER_SW_DMA_0:
drive->id->dma_1word |= 0x0101; break;
default: break;
}
}
enable_irq(hwif->irq);
return result;
}
/* Calculate PIO timings */
static void __pmac
pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
{
ide_pio_data_t d;
u32 *timings;
unsigned accessTicks, recTicks;
unsigned accessTime, recTime;
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
if (pmif == NULL)
return;
/* which drive is it ? */
timings = &pmif->timings[drive->select.b.unit & 0x01];
pio = ide_get_best_pio_mode(drive, pio, 4, &d);
switch (pmif->kind) {
case controller_un_ata6: {
/* 100Mhz cell */
u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
if (tr == 0)
return;
*timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
break;
}
case controller_kl_ata4:
/* 66Mhz cell */
recTime = d.cycle_time - ide_pio_timings[pio].active_time
- ide_pio_timings[pio].setup_time;
recTime = max(recTime, 150U);
accessTime = ide_pio_timings[pio].active_time;
accessTime = max(accessTime, 150U);
accessTicks = SYSCLK_TICKS_66(accessTime);
accessTicks = min(accessTicks, 0x1fU);
recTicks = SYSCLK_TICKS_66(recTime);
recTicks = min(recTicks, 0x1fU);
*timings = ((*timings) & ~TR_66_PIO_MASK) |
(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
(recTicks << TR_66_PIO_RECOVERY_SHIFT);
break;
default: {
/* 33Mhz cell */
int ebit = 0;
recTime = d.cycle_time - ide_pio_timings[pio].active_time
- ide_pio_timings[pio].setup_time;
recTime = max(recTime, 150U);
accessTime = ide_pio_timings[pio].active_time;
accessTime = max(accessTime, 150U);
accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = min(accessTicks, 0x1fU);
accessTicks = max(accessTicks, 4U);
recTicks = SYSCLK_TICKS(recTime);
recTicks = min(recTicks, 0x1fU);
recTicks = max(recTicks, 5U) - 4;
if (recTicks > 9) {
recTicks--; /* guess, but it's only for PIO0, so... */
ebit = 1;
}
*timings = ((*timings) & ~TR_33_PIO_MASK) |
(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
(recTicks << TR_33_PIO_RECOVERY_SHIFT);
if (ebit)
*timings |= TR_33_PIO_E;
break;
}
}
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: Set PIO timing for mode %d, reg: 0x%08x\n",
pio, *timings);
#endif
if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
pmac_ide_do_update_timings(drive);
}
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
static int __pmac
set_timings_udma_ata4(u32 *timings, u8 speed)
{
unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
if (speed > XFER_UDMA_4)
return 1;
rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
TR_66_UDMA_EN;
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
speed & 0xf, *timings);
#endif
return 0;
}
static int __pmac
set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
{
struct ide_timing *t = ide_timing_find_mode(speed);
u32 tr;
if (speed > XFER_UDMA_5 || t == NULL)
return 1;
tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
if (tr == 0)
return 1;
*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
return 0;
}
static int __pmac
set_timings_mdma(int intf_type, u32 *timings, u32 *timings2, u8 speed, int drive_cycle_time)
{
int cycleTime, accessTime, recTime;
unsigned accessTicks, recTicks;
struct mdma_timings_t* tm = NULL;
int i;
/* Get default cycle time for mode */
switch(speed & 0xf) {
case 0: cycleTime = 480; break;
case 1: cycleTime = 150; break;
case 2: cycleTime = 120; break;
default:
return 1;
}
/* Adjust for drive */
if (drive_cycle_time && drive_cycle_time > cycleTime)
cycleTime = drive_cycle_time;
/* OHare limits according to some old Apple sources */
if ((intf_type == controller_ohare) && (cycleTime < 150))
cycleTime = 150;
/* Get the proper timing array for this controller */
switch(intf_type) {
case controller_un_ata6:
break;
case controller_kl_ata4:
tm = mdma_timings_66;
break;
case controller_kl_ata3:
tm = mdma_timings_33k;
break;
default:
tm = mdma_timings_33;
break;
}
if (tm != NULL) {
/* Lookup matching access & recovery times */
i = -1;
for (;;) {
if (tm[i+1].cycleTime < cycleTime)
break;
i++;
}
if (i < 0)
return 1;
cycleTime = tm[i].cycleTime;
accessTime = tm[i].accessTime;
recTime = tm[i].recoveryTime;
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
cycleTime, accessTime, recTime);
#endif
}
switch(intf_type) {
case controller_un_ata6: {
/* 100Mhz cell */
u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
if (tr == 0)
return 1;
*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
}
break;
case controller_kl_ata4:
/* 66Mhz cell */
accessTicks = SYSCLK_TICKS_66(accessTime);
accessTicks = min(accessTicks, 0x1fU);
accessTicks = max(accessTicks, 0x1U);
recTicks = SYSCLK_TICKS_66(recTime);
recTicks = min(recTicks, 0x1fU);
recTicks = max(recTicks, 0x3U);
/* Clear out mdma bits and disable udma */
*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
break;
case controller_kl_ata3:
/* 33Mhz cell on KeyLargo */
accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = max(accessTicks, 1U);
accessTicks = min(accessTicks, 0x1fU);
accessTime = accessTicks * IDE_SYSCLK_NS;
recTicks = SYSCLK_TICKS(recTime);
recTicks = max(recTicks, 1U);
recTicks = min(recTicks, 0x1fU);
*timings = ((*timings) & ~TR_33_MDMA_MASK) |
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
break;
default: {
/* 33Mhz cell on others */
int halfTick = 0;
int origAccessTime = accessTime;
int origRecTime = recTime;
accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = max(accessTicks, 1U);
accessTicks = min(accessTicks, 0x1fU);
accessTime = accessTicks * IDE_SYSCLK_NS;
recTicks = SYSCLK_TICKS(recTime);
recTicks = max(recTicks, 2U) - 1;
recTicks = min(recTicks, 0x1fU);
recTime = (recTicks + 1) * IDE_SYSCLK_NS;
if ((accessTicks > 1) &&
((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
halfTick = 1;
accessTicks--;
}
*timings = ((*timings) & ~TR_33_MDMA_MASK) |
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
if (halfTick)
*timings |= TR_33_MDMA_HALFTICK;
}
}
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: Set MDMA timing for mode %d, reg: 0x%08x\n",
speed & 0xf, *timings);
#endif
return 0;
}
#endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
/* You may notice we don't use this function on normal operation,
* our, normal mdma function is supposed to be more precise
*/
static int __pmac
pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
{
int unit = (drive->select.b.unit & 0x01);
int ret = 0;
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
u32 *timings, *timings2;
if (pmif == NULL)
return 1;
timings = &pmif->timings[unit];
timings2 = &pmif->timings[unit+2];
switch(speed) {
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
case XFER_UDMA_5:
if (pmif->kind != controller_un_ata6)
return 1;
case XFER_UDMA_4:
case XFER_UDMA_3:
if (HWIF(drive)->udma_four == 0)
return 1;
case XFER_UDMA_2:
case XFER_UDMA_1:
case XFER_UDMA_0:
if (pmif->kind == controller_kl_ata4)
ret = set_timings_udma_ata4(timings, speed);
else if (pmif->kind == controller_un_ata6)
ret = set_timings_udma_ata6(timings, timings2, speed);
else
ret = 1;
break;
case XFER_MW_DMA_2:
case XFER_MW_DMA_1:
case XFER_MW_DMA_0:
ret = set_timings_mdma(pmif->kind, timings, timings2, speed, 0);
break;
case XFER_SW_DMA_2:
case XFER_SW_DMA_1:
case XFER_SW_DMA_0:
return 1;
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
case XFER_PIO_4:
case XFER_PIO_3:
case XFER_PIO_2:
case XFER_PIO_1:
case XFER_PIO_0:
pmac_ide_tuneproc(drive, speed & 0x07);
break;
default:
ret = 1;
}
if (ret)
return ret;
ret = pmac_ide_do_setfeature(drive, speed);
if (ret)
return ret;
pmac_ide_do_update_timings(drive);
drive->current_speed = speed;
return 0;
}
static void __pmac
sanitize_timings(pmac_ide_hwif_t *pmif)
{
unsigned int value, value2 = 0;
switch(pmif->kind) {
case controller_un_ata6:
value = 0x08618a92;
value2 = 0x00002921;
break;
case controller_kl_ata4:
value = 0x0008438c;
break;
case controller_kl_ata3:
value = 0x00084526;
break;
case controller_heathrow:
case controller_ohare:
default:
value = 0x00074526;
break;
}
pmif->timings[0] = pmif->timings[1] = value;
pmif->timings[2] = pmif->timings[3] = value2;
}
ide_ioreg_t __pmac
pmac_ide_get_base(int index)
{
return pmac_ide[index].regbase;
}
int __pmac
pmac_ide_check_base(ide_ioreg_t base)
{
int ix;
for (ix = 0; ix < MAX_HWIFS; ++ix)
if (base == pmac_ide[ix].regbase)
return ix;
return -1;
}
struct device_node*
pmac_ide_get_of_node(int index)
{
/* Don't access the pmac_ide array on non-pmac */
if (pmac_ide_count == 0)
return NULL;
if (pmac_ide[index].regbase == 0)
return NULL;
return pmac_ide[index].node;
}
int __pmac
pmac_ide_get_irq(ide_ioreg_t base)
{
int ix;
for (ix = 0; ix < MAX_HWIFS; ++ix)
if (base == pmac_ide[ix].regbase)
return pmac_ide[ix].irq;
return 0;
}
static int ide_majors[] __pmacdata = { 3, 22, 33, 34, 56, 57 };
kdev_t __init
pmac_find_ide_boot(char *bootdevice, int n)
{
int i;
/*
* Look through the list of IDE interfaces for this one.
*/
for (i = 0; i < pmac_ide_count; ++i) {
char *name;
if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
continue;
name = pmac_ide[i].node->full_name;
if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
/* XXX should cope with the 2nd drive as well... */
return MKDEV(ide_majors[i], 0);
}
}
return 0;
}
void __init
pmac_ide_probe(void)
{
struct device_node *np;
int i;
struct device_node *atas = NULL;
struct device_node *p, *nextp, **pp, *removables, **rp;
unsigned long base, regbase;
int irq;
ide_hwif_t *hwif;
if (_machine != _MACH_Pmac)
return;
pp = &atas;
rp = &removables;
p = find_devices("ATA");
if (p == NULL)
p = find_devices("IDE");
if (p == NULL)
p = find_type_devices("ide");
if (p == NULL)
p = find_type_devices("ata");
/* Move removable devices such as the media-bay CDROM
on the PB3400 to the end of the list. */
for (; p != NULL; p = nextp) {
nextp = p->next;
if (p->parent && p->parent->type
&& strcasecmp(p->parent->type, "media-bay") == 0) {
*rp = p;
rp = &p->next;
}
#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
/* Move Kauai ATA/100 if it exist to first postition in list */
else if (device_is_compatible(p, "kauai-ata")) {
p->next = atas;
if (pp == &atas)
pp = &p->next;
atas = p;
}
#endif /* CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST */
else {
*pp = p;
pp = &p->next;
}
}
*rp = NULL;
*pp = removables;
for (i = 0, np = atas; i < MAX_HWIFS && np != NULL; np = np->next) {
struct device_node *tp;
struct pmac_ide_hwif* pmif;
int *bidp;
int in_bay = 0;
u8 pbus, pid;
struct pci_dev *pdev = NULL;
/*
* If this node is not under a mac-io or dbdma node,
* leave it to the generic PCI driver. Except for U2's
* Kauai ATA
*/
if (!device_is_compatible(np, "kauai-ata")) {
for (tp = np->parent; tp != 0; tp = tp->parent)
if (tp->type && (strcmp(tp->type, "mac-io") == 0
|| strcmp(tp->type, "dbdma") == 0))
break;
if (tp == 0)
continue;
if (np->n_addrs == 0) {
printk(KERN_WARNING "ide-pmac: no address for device %s\n",
np->full_name);
continue;
}
/* We need to find the pci_dev of the mac-io holding the
* IDE interface
*/
if (pci_device_from_OF_node(tp, &pbus, &pid) == 0)
pdev = pci_find_slot(pbus, pid);
if (pdev == NULL)
printk(KERN_WARNING "ide-pmac: no PCI host for device %s, DMA disabled\n",
np->full_name);
/*
* Some older OFs have bogus sizes, causing request_OF_resource
* to fail. We fix them up here
*/
if (np->addrs[0].size > 0x1000)
np->addrs[0].size = 0x1000;
if (np->n_addrs > 1 && np->addrs[1].size > 0x100)
np->addrs[1].size = 0x100;
if (request_OF_resource(np, 0, " (mac-io IDE IO)") == NULL) {
printk(KERN_ERR "ide-pmac(%s): can't request IO resource !\n", np->name);
continue;
}
base = (unsigned long) ioremap(np->addrs[0].address, 0x400);
regbase = base;
/* XXX This is bogus. Should be fixed in the registry by checking
the kind of host interrupt controller, a bit like gatwick
fixes in irq.c
*/
if (np->n_intrs == 0) {
printk(KERN_WARNING "ide-pmac: no intrs for device %s, using 13\n",
np->full_name);
irq = 13;
} else {
irq = np->intrs[0].line;
}
} else {
unsigned long rbase, rlen;
if (pci_device_from_OF_node(np, &pbus, &pid) == 0)
pdev = pci_find_slot(pbus, pid);
if (pdev == NULL) {
printk(KERN_WARNING "ide-pmac: no PCI host for device %s, skipping\n",
np->full_name);
continue;
}
if (pci_enable_device(pdev)) {
printk(KERN_WARNING "ide-pmac: Can't enable PCI device for %s, skipping\n",
np->full_name);
continue;
}
pci_set_master(pdev);
if (pci_request_regions(pdev, "U2 IDE")) {
printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources\n");
continue;
}
rbase = pci_resource_start(pdev, 0);
rlen = pci_resource_len(pdev, 0);
base = (unsigned long) ioremap(rbase, rlen);
regbase = base + 0x2000;
irq = pdev->irq;
}
/*
* If this slot is taken (e.g. by ide-pci.c) try the next one.
*/
while (i < MAX_HWIFS
&& ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0)
++i;
if (i >= MAX_HWIFS)
break;
pmif = &pmac_ide[i];
pmif->mapbase = base;
pmif->regbase = regbase;
pmif->irq = irq;
pmif->node = np;
pmif->cable_80 = 0;
if (device_is_compatible(np, "kauai-ata")) {
pmif->kind = controller_un_ata6;
pci_set_drvdata(pdev, pmif);
} else if (device_is_compatible(np, "keylargo-ata")) {
if (strcmp(np->name, "ata-4") == 0)
pmif->kind = controller_kl_ata4;
else
pmif->kind = controller_kl_ata3;
} else if (device_is_compatible(np, "heathrow-ata"))
pmif->kind = controller_heathrow;
else
pmif->kind = controller_ohare;
bidp = (int *)get_property(np, "AAPL,bus-id", NULL);
pmif->aapl_bus_id = bidp ? *bidp : 0;
/* Get cable type from device-tree */
if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6) {
char* cable = get_property(np, "cable-type", NULL);
if (cable && !strncmp(cable, "80-", 3))
pmif->cable_80 = 1;
}
/* Make sure we have sane timings */
sanitize_timings(pmif);
if (np->parent && np->parent->name
&& strcasecmp(np->parent->name, "media-bay") == 0) {
#ifdef CONFIG_PMAC_PBOOK
media_bay_set_ide_infos(np->parent,regbase,irq,i);
#endif /* CONFIG_PMAC_PBOOK */
in_bay = 1;
if (!bidp)
pmif->aapl_bus_id = 1;
} else if (pmif->kind == controller_ohare) {
/* The code below is having trouble on some ohare machines
* (timing related ?). Until I can put my hand on one of these
* units, I keep the old way
*/
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
} else {
/* This is necessary to enable IDE when net-booting */
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
mdelay(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
}
hwif = &ide_hwifs[i];
/* Setup MMIO ops */
default_hwif_mmiops(hwif);
hwif->OUTBSYNC = pmac_outbsync;
/* Tell common code _not_ to mess with resources */
hwif->mmio = 2;
hwif->hwif_data = pmif;
pmac_ide_init_hwif_ports(&hwif->hw, regbase, 0, &hwif->irq);
memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
hwif->chipset = ide_pmac;
hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || in_bay;
hwif->hold = in_bay;
hwif->udma_four = pmif->cable_80;
hwif->pci_dev = pdev;
hwif->drives[0].unmask = 1;
hwif->drives[1].unmask = 1;
hwif->tuneproc = pmac_ide_tuneproc;
if (pmif->kind == controller_un_ata6)
hwif->selectproc = pmac_ide_kauai_selectproc;
else
hwif->selectproc = pmac_ide_selectproc;
hwif->speedproc = pmac_ide_tune_chipset;
printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s\n",
i, model_name[pmif->kind], pmif->aapl_bus_id,
in_bay ? " (mediabay)" : "");
#ifdef CONFIG_PMAC_PBOOK
if (in_bay && check_media_bay_by_base(regbase, MB_CD) == 0)
hwif->noprobe = 0;
#endif /* CONFIG_PMAC_PBOOK */
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
if (np->n_addrs >= 2 || pmif->kind == controller_un_ata6) {
/* has a DBDMA controller channel */
pmac_ide_setup_dma(np, i);
}
hwif->atapi_dma = 1;
switch(pmif->kind) {
case controller_un_ata6:
hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x00;
break;
case controller_kl_ata4:
hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x00;
break;
default:
hwif->ultra_mask = 0x00;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x00;
break;
}
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
++i;
}
pmac_ide_count = i;
if (pmac_ide_count == 0)
return;
#ifdef CONFIG_PMAC_PBOOK
pmu_register_sleep_notifier(&idepmac_sleep_notifier);
#endif /* CONFIG_PMAC_PBOOK */
}
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
static int __pmac
pmac_ide_build_sglist(ide_hwif_t *hwif, struct request *rq, int data_dir)
{
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct buffer_head *bh;
struct scatterlist *sg = pmif->sg_table;
unsigned long lastdataend = ~0UL;
int nents = 0;
if (hwif->sg_dma_active)
BUG();
pmif->sg_dma_direction = data_dir;
bh = rq->bh;
do {
int contig = 0;
if (bh->b_page) {
if (bh_phys(bh) == lastdataend)
contig = 1;
} else {
if ((unsigned long) bh->b_data == lastdataend)
contig = 1;
}
if (contig) {
sg[nents - 1].length += bh->b_size;
lastdataend += bh->b_size;
continue;
}
if (nents >= MAX_DCMDS)
return 0;
memset(&sg[nents], 0, sizeof(*sg));
if (bh->b_page) {
sg[nents].page = bh->b_page;
sg[nents].offset = bh_offset(bh);
lastdataend = bh_phys(bh) + bh->b_size;
} else {
if ((unsigned long) bh->b_data < PAGE_SIZE)
BUG();
sg[nents].address = bh->b_data;
lastdataend = (unsigned long) bh->b_data + bh->b_size;
}
sg[nents].length = bh->b_size;
nents++;
} while ((bh = bh->b_reqnext) != NULL);
if(nents == 0)
BUG();
return pci_map_sg(hwif->pci_dev, sg, nents, data_dir);
}
static int __pmac
pmac_ide_raw_build_sglist(ide_hwif_t *hwif, struct request *rq)
{
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct scatterlist *sg = hwif->sg_table;
int nents = 0;
ide_task_t *args = rq->special;
unsigned char *virt_addr = rq->buffer;
int sector_count = rq->nr_sectors;
if (args->command_type == IDE_DRIVE_TASK_RAW_WRITE)
pmif->sg_dma_direction = PCI_DMA_TODEVICE;
else
pmif->sg_dma_direction = PCI_DMA_FROMDEVICE;
if (sector_count > 128) {
memset(&sg[nents], 0, sizeof(*sg));
sg[nents].address = virt_addr;
sg[nents].length = 128 * SECTOR_SIZE;
nents++;
virt_addr = virt_addr + (128 * SECTOR_SIZE);
sector_count -= 128;
}
memset(&sg[nents], 0, sizeof(*sg));
sg[nents].address = virt_addr;
sg[nents].length = sector_count * SECTOR_SIZE;
nents++;
return pci_map_sg(hwif->pci_dev, sg, nents, pmif->sg_dma_direction);
}
/*
* pmac_ide_build_dmatable builds the DBDMA command list
* for a transfer and sets the DBDMA channel to point to it.
*/
static int __pmac
pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq, int ddir)
{
struct dbdma_cmd *table;
int i, count = 0;
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
volatile struct dbdma_regs *dma = pmif->dma_regs;
struct scatterlist *sg;
/* DMA table is already aligned */
table = (struct dbdma_cmd *) pmif->dma_table_cpu;
/* Make sure DMA controller is stopped (necessary ?) */
writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
while (readl(&dma->status) & RUN)
udelay(1);
/* Build sglist */
if (rq->cmd == IDE_DRIVE_TASKFILE)
pmif->sg_nents = i = pmac_ide_raw_build_sglist(hwif, rq);
else
pmif->sg_nents = i = pmac_ide_build_sglist(hwif, rq, ddir);
if (!i)
return 0;
/* Build DBDMA commands list */
sg = pmif->sg_table;
while (i && sg_dma_len(sg)) {
u32 cur_addr;
u32 cur_len;
cur_addr = sg_dma_address(sg);
cur_len = sg_dma_len(sg);
while (cur_len) {
unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
if (++count >= MAX_DCMDS) {
printk(KERN_WARNING "%s: DMA table too small\n",
drive->name);
goto use_pio_instead;
}
st_le16(&table->command,
(ddir == PCI_DMA_TODEVICE) ? OUTPUT_MORE: INPUT_MORE);
st_le16(&table->req_count, tc);
st_le32(&table->phy_addr, cur_addr);
table->cmd_dep = 0;
table->xfer_status = 0;
table->res_count = 0;
cur_addr += tc;
cur_len -= tc;
++table;
}
sg++;
i--;
}
/* convert the last command to an input/output last command */
if (count) {
st_le16(&table[-1].command,
(ddir == PCI_DMA_TODEVICE) ? OUTPUT_LAST: INPUT_LAST);
/* add the stop command to the end of the list */
memset(table, 0, sizeof(struct dbdma_cmd));
st_le16(&table->command, DBDMA_STOP);
mb();
writel(pmif->dma_table_dma, &dma->cmdptr);
return 1;
}
printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
use_pio_instead:
pci_unmap_sg(hwif->pci_dev,
pmif->sg_table,
pmif->sg_nents,
pmif->sg_dma_direction);
hwif->sg_dma_active = 0;
return 0; /* revert to PIO for this request */
}
/* Teardown mappings after DMA has completed. */
static void __pmac
pmac_ide_destroy_dmatable (ide_drive_t *drive)
{
struct pci_dev *dev = HWIF(drive)->pci_dev;
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
struct scatterlist *sg = pmif->sg_table;
int nents = pmif->sg_nents;
if (nents) {
pci_unmap_sg(dev, sg, nents, pmif->sg_dma_direction);
pmif->sg_nents = 0;
HWIF(drive)->sg_dma_active = 0;
}
}
/* Calculate MultiWord DMA timings */
static int __pmac
pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
{
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
int drive_cycle_time;
struct hd_driveid *id = drive->id;
u32 *timings, *timings2;
u32 timing_local[2];
int ret;
/* which drive is it ? */
timings = &pmif->timings[drive->select.b.unit & 0x01];
timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
/* Check if drive provide explicit cycle time */
if ((id->field_valid & 2) && (id->eide_dma_time))
drive_cycle_time = id->eide_dma_time;
else
drive_cycle_time = 0;
/* Copy timings to local image */
timing_local[0] = *timings;
timing_local[1] = *timings2;
/* Calculate controller timings */
ret = set_timings_mdma( pmif->kind,
&timing_local[0],
&timing_local[1],
mode,
drive_cycle_time);
if (ret)
return 0;
/* Set feature on drive */
printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
ret = pmac_ide_do_setfeature(drive, mode);
if (ret) {
printk(KERN_WARNING "%s: Failed !\n", drive->name);
return 0;
}
/* Apply timings to controller */
*timings = timing_local[0];
*timings2 = timing_local[1];
/* Set speed info in drive */
drive->current_speed = mode;
if (!drive->init_speed)
drive->init_speed = mode;
return 1;
}
/* Calculate Ultra DMA timings */
static int __pmac
pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
{
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
u32 *timings, *timings2;
u32 timing_local[2];
int ret;
/* which drive is it ? */
timings = &pmif->timings[drive->select.b.unit & 0x01];
timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
/* Copy timings to local image */
timing_local[0] = *timings;
timing_local[1] = *timings2;
/* Calculate timings for interface */
if (pmif->kind == controller_un_ata6)
ret = set_timings_udma_ata6( &timing_local[0],
&timing_local[1],
mode);
else
ret = set_timings_udma_ata4(&timing_local[0], mode);
if (ret)
return 0;
/* Set feature on drive */
printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
ret = pmac_ide_do_setfeature(drive, mode);
if (ret) {
printk(KERN_WARNING "%s: Failed !\n", drive->name);
return 0;
}
/* Apply timings to controller */
*timings = timing_local[0];
*timings2 = timing_local[1];
/* Set speed info in drive */
drive->current_speed = mode;
if (!drive->init_speed)
drive->init_speed = mode;
return 1;
}
static __pmac
int pmac_ide_dma_check(ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
int enable = 1;
int map;
drive->using_dma = 0;
if (pmif == NULL)
return 0;
if (drive->media == ide_floppy)
enable = 0;
if (((id->capability & 1) == 0) &&
!HWIF(drive)->ide_dma_good_drive(drive))
enable = 0;
if (HWIF(drive)->ide_dma_bad_drive(drive))
enable = 0;
if (enable) {
short mode;
map = XFER_MWDMA;
if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6) {
map |= XFER_UDMA;
if (pmif->cable_80) {
map |= XFER_UDMA_66;
if (pmif->kind == controller_un_ata6)
map |= XFER_UDMA_100;
}
}
mode = ide_find_best_mode(drive, map);
if (mode & XFER_UDMA)
drive->using_dma = pmac_ide_udma_enable(drive, mode);
else if (mode & XFER_MWDMA)
drive->using_dma = pmac_ide_mdma_enable(drive, mode);
hwif->OUTB(0, IDE_CONTROL_REG);
/* Apply settings to controller */
pmac_ide_do_update_timings(drive);
}
return 0;
}
static int __pmac
pmac_ide_dma_read (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct request *rq = HWGROUP(drive)->rq;
// ide_task_t *args = rq->special;
u8 unit = (drive->select.b.unit & 0x01);
u8 ata4;
u8 lba48 = (drive->addressing == 1) ? 1 : 0;
task_ioreg_t command = WIN_NOP;
if (pmif == NULL)
return 1;
ata4 = (pmif->kind == controller_kl_ata4);
if (!pmac_ide_build_dmatable(drive, rq, PCI_DMA_FROMDEVICE))
/* try PIO instead of DMA */
return 1;
/* Apple adds 60ns to wrDataSetup on reads */
if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
writel(pmif->timings[unit]+0x00800000UL,
(unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
(void)readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG));
}
drive->waiting_for_dma = 1;
if (drive->media != ide_disk)
return 0;
/*
* FIX ME to use only ACB ide_task_t args Struct
*/
#if 0
{
ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET];
}
#else
command = (lba48) ? WIN_READDMA_EXT : WIN_READDMA;
if (rq->cmd == IDE_DRIVE_TASKFILE) {
ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET];
}
#endif
/* issue cmd to drive */
ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
return pmac_ide_dma_begin(drive);
}
static int __pmac
pmac_ide_dma_write (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct request *rq = HWGROUP(drive)->rq;
// ide_task_t *args = rq->special;
u8 unit = (drive->select.b.unit & 0x01);
u8 ata4;
u8 lba48 = (drive->addressing == 1) ? 1 : 0;
task_ioreg_t command = WIN_NOP;
if (pmif == NULL)
return 1;
ata4 = (pmif->kind == controller_kl_ata4);
if (!pmac_ide_build_dmatable(drive, rq, PCI_DMA_TODEVICE))
/* try PIO instead of DMA */
return 1;
/* Apple adds 60ns to wrDataSetup on reads */
if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
writel(pmif->timings[unit],
(unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
(void)readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG));
}
drive->waiting_for_dma = 1;
if (drive->media != ide_disk)
return 0;
/*
* FIX ME to use only ACB ide_task_t args Struct
*/
#if 0
{
ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET];
}
#else
command = (lba48) ? WIN_WRITEDMA_EXT : WIN_WRITEDMA;
if (rq->cmd == IDE_DRIVE_TASKFILE) {
ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET];
}
#endif
/* issue cmd to drive */
ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
return pmac_ide_dma_begin(drive);
}
static int __pmac
pmac_ide_dma_count (ide_drive_t *drive)
{
return HWIF(drive)->ide_dma_begin(drive);
}
static int __pmac
pmac_ide_dma_begin (ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
volatile struct dbdma_regs *dma;
if (pmif == NULL)
return 1;
dma = pmif->dma_regs;
writel((RUN << 16) | RUN, &dma->control);
/* Make sure it gets to the controller right now */
(void)readl(&dma->control);
return 0;
}
static int __pmac
pmac_ide_dma_end (ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
volatile struct dbdma_regs *dma;
u32 dstat;
if (pmif == NULL)
return 0;
dma = pmif->dma_regs;
drive->waiting_for_dma = 0;
dstat = readl(&dma->status);
writel(((RUN|WAKE|DEAD) << 16), &dma->control);
pmac_ide_destroy_dmatable(drive);
/* verify good dma status */
if ((dstat & (RUN|DEAD|ACTIVE)) == RUN)
return 0;
printk(KERN_WARNING "%s: bad status at DMA end, dstat=%x\n",
drive->name, dstat);
return 1;
}
static int __pmac
pmac_ide_dma_test_irq (ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
volatile struct dbdma_regs *dma;
unsigned long status;
if (pmif == NULL)
return 0;
dma = pmif->dma_regs;
/* We have to things to deal with here:
*
* - The dbdma won't stop if the command was started
* but completed with an error without transfering all
* datas. This happens when bad blocks are met during
* a multi-block transfer.
*
* - The dbdma fifo hasn't yet finished flushing to
* to system memory when the disk interrupt occurs.
*
* The trick here is to increment drive->waiting_for_dma,
* and return as if no interrupt occured. If the counter
* reach a certain timeout value, we then return 1. If
* we really got the interrupt, it will happen right away
* again.
* Apple's solution here may be more elegant. They issue
* a DMA channel interrupt (a separate irq line) via a DBDMA
* NOP command just before the STOP, and wait for both the
* disk and DBDMA interrupts to have completed.
*/
/* If ACTIVE is cleared, the STOP command have passed and
* transfer is complete.
*/
status = readl(&dma->status);
if (!(status & ACTIVE))
return 1;
if (!drive->waiting_for_dma)
printk(KERN_WARNING "%s: ide_dma_test_irq \
called while not waiting\n", drive->name);
/* If dbdma didn't execute the STOP command yet, the
* active bit is still set */
drive->waiting_for_dma++;
if (drive->waiting_for_dma >= DMA_WAIT_TIMEOUT) {
printk(KERN_WARNING "%s: timeout waiting \
for dbdma command stop\n", drive->name);
return 1;
}
udelay(10);
return 0;
}
static int __pmac
pmac_ide_dma_host_off (ide_drive_t *drive)
{
return 0;
}
static int __pmac
pmac_ide_dma_host_on (ide_drive_t *drive)
{
return 0;
}
static int __pmac
pmac_ide_dma_lostirq (ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
volatile struct dbdma_regs *dma;
unsigned long status;
if (pmif == NULL)
return 0;
dma = pmif->dma_regs;
status = readl(&dma->status);
printk(KERN_ERR "%s: lost interrupt, dma status: %lx\n", drive->name, status);
return 0;
}
static void __init
pmac_ide_setup_dma(struct device_node *np, int ix)
{
struct pmac_ide_hwif *pmif = &pmac_ide[ix];
if (device_is_compatible(np, "kauai-ata")) {
pmif->dma_regs = (volatile struct dbdma_regs*)(pmif->mapbase + 0x1000);
} else {
if (request_OF_resource(np, 1, " (mac-io IDE DMA)") == NULL) {
printk(KERN_ERR "ide-pmac(%s): can't request DMA resource !\n", np->name);
return;
}
pmif->dma_regs =
(volatile struct dbdma_regs*)ioremap(np->addrs[1].address, 0x200);
}
/*
* Allocate space for the DBDMA commands.
* The +2 is +1 for the stop command and +1 to allow for
* aligning the start address to a multiple of 16 bytes.
*/
pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
ide_hwifs[ix].pci_dev,
(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
&pmif->dma_table_dma);
if (pmif->dma_table_cpu == NULL) {
printk(KERN_ERR "%s: unable to allocate DMA command list\n",
ide_hwifs[ix].name);
return;
}
pmif->sg_table = kmalloc(sizeof(struct scatterlist) * MAX_DCMDS,
GFP_KERNEL);
if (pmif->sg_table == NULL) {
pci_free_consistent( ide_hwifs[ix].pci_dev,
(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
pmif->dma_table_cpu, pmif->dma_table_dma);
return;
}
ide_hwifs[ix].ide_dma_off = &__ide_dma_off;
ide_hwifs[ix].ide_dma_off_quietly = &__ide_dma_off_quietly;
ide_hwifs[ix].ide_dma_on = &__ide_dma_on;
ide_hwifs[ix].ide_dma_check = &pmac_ide_dma_check;
ide_hwifs[ix].ide_dma_read = &pmac_ide_dma_read;
ide_hwifs[ix].ide_dma_write = &pmac_ide_dma_write;
ide_hwifs[ix].ide_dma_count = &pmac_ide_dma_count;
ide_hwifs[ix].ide_dma_begin = &pmac_ide_dma_begin;
ide_hwifs[ix].ide_dma_end = &pmac_ide_dma_end;
ide_hwifs[ix].ide_dma_test_irq = &pmac_ide_dma_test_irq;
ide_hwifs[ix].ide_dma_host_off = &pmac_ide_dma_host_off;
ide_hwifs[ix].ide_dma_host_on = &pmac_ide_dma_host_on;
ide_hwifs[ix].ide_dma_good_drive = &__ide_dma_good_drive;
ide_hwifs[ix].ide_dma_bad_drive = &__ide_dma_bad_drive;
ide_hwifs[ix].ide_dma_verbose = &__ide_dma_verbose;
ide_hwifs[ix].ide_dma_timeout = &__ide_dma_timeout;
ide_hwifs[ix].ide_dma_retune = &__ide_dma_retune;
ide_hwifs[ix].ide_dma_lostirq = &pmac_ide_dma_lostirq;
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC_AUTO
if (!noautodma)
ide_hwifs[ix].autodma = 1;
#endif
ide_hwifs[ix].drives[0].autodma = ide_hwifs[ix].autodma;
ide_hwifs[ix].drives[1].autodma = ide_hwifs[ix].autodma;
}
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
static void __pmac
idepmac_sleep_device(ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
int j;
/* FIXME: We only handle the master IDE disk, we shoud
* try to fix CD-ROMs here
*/
switch (drive->media) {
case ide_disk:
/* Spin down the drive */
SELECT_DRIVE(drive);
SELECT_MASK(drive, 0);
hwif->OUTB(drive->select.all, IDE_SELECT_REG);
(void) hwif->INB(IDE_SELECT_REG);
udelay(100);
hwif->OUTB(0x00, IDE_SECTOR_REG);
hwif->OUTB(0x00, IDE_NSECTOR_REG);
hwif->OUTB(0x00, IDE_LCYL_REG);
hwif->OUTB(0x00, IDE_HCYL_REG);
hwif->OUTB(drive->ctl|2, IDE_CONTROL_REG);
hwif->OUTB(WIN_STANDBYNOW1, IDE_COMMAND_REG);
for (j = 0; j < 10; j++) {
u8 status;
mdelay(100);
status = hwif->INB(IDE_STATUS_REG);
if (!(status & BUSY_STAT) && (status & DRQ_STAT))
break;
}
break;
case ide_cdrom:
// todo
break;
case ide_floppy:
// todo
break;
}
}
#ifdef CONFIG_PMAC_PBOOK
static void __pmac
idepmac_wake_device(ide_drive_t *drive, int used_dma)
{
/* We force the IDE subdriver to check for a media change
* This must be done first or we may lost the condition
*
* Problem: This can schedule. I moved the block device
* wakeup almost late by priority because of that.
*/
if (DRIVER(drive)->media_change)
DRIVER(drive)->media_change(drive);
/* We kick the VFS too (see fix in ide.c revalidate) */
check_disk_change(MKDEV(HWIF(drive)->major, (drive->select.b.unit) << PARTN_BITS));
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
/* We re-enable DMA on the drive if it was active. */
/* This doesn't work with the CD-ROM in the media-bay, probably
* because of a pending unit attention. The problem if that if I
* clear the error, the filesystem dies.
*/
if (used_dma && !ide_spin_wait_hwgroup(drive)) {
/* Lock HW group */
HWGROUP(drive)->busy = 1;
pmac_ide_dma_check(drive);
HWGROUP(drive)->busy = 0;
if (!list_empty(&drive->queue.queue_head))
ide_do_request(HWGROUP(drive), 0);
spin_unlock_irq(&io_request_lock);
}
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
}
static void __pmac
idepmac_sleep_interface(pmac_ide_hwif_t *pmif, unsigned base, int mediabay)
{
struct device_node* np = pmif->node;
/* We clear the timings */
pmif->timings[0] = 0;
pmif->timings[1] = 0;
/* The media bay will handle itself just fine */
if (mediabay)
return;
/* Disable the bus */
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 0);
}
static void __pmac
idepmac_wake_interface(pmac_ide_hwif_t *pmif, unsigned long base, int mediabay)
{
struct device_node* np = pmif->node;
if (!mediabay) {
/* Revive IDE disk and controller */
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
mdelay(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
}
}
static void __pmac
idepmac_sleep_drive(ide_drive_t *drive)
{
int unlock = 0;
/* Wait for HW group to complete operations */
if (ide_spin_wait_hwgroup(drive)) {
// What can we do here ? Wake drive we had already
// put to sleep and return an error ?
} else {
unlock = 1;
/* Lock HW group */
HWGROUP(drive)->busy = 1;
/* Stop the device */
idepmac_sleep_device(drive);
}
if (unlock)
spin_unlock_irq(&io_request_lock);
}
static void __pmac
idepmac_wake_drive(ide_drive_t *drive, unsigned long base)
{
ide_hwif_t *hwif = HWIF(drive);
unsigned long flags;
int j;
/* Reset timings */
pmac_ide_do_update_timings(drive);
mdelay(10);
/* Wait up to 20 seconds for the drive to be ready */
for (j = 0; j < 200; j++) {
u8 status = 0;
mdelay(100);
hwif->OUTB(drive->select.all, base + 0x60);
if ((hwif->INB(base + 0x60)) != drive->select.all)
continue;
status = hwif->INB(base + 0x70);
if (!(status & BUSY_STAT))
break;
}
/* We resume processing on the HW group */
spin_lock_irqsave(&io_request_lock, flags);
HWGROUP(drive)->busy = 0;
if (!list_empty(&drive->queue.queue_head))
ide_do_request(HWGROUP(drive), 0);
spin_unlock_irqrestore(&io_request_lock, flags);
}
/* Note: We support only master drives for now. This will have to be
* improved if we want to handle sleep on the iMacDV where the CD-ROM
* is a slave
*/
static int __pmac
idepmac_notify_sleep(struct pmu_sleep_notifier *self, int when)
{
int i, ret;
unsigned long base;
int big_delay;
switch (when) {
case PBOOK_SLEEP_REQUEST:
break;
case PBOOK_SLEEP_REJECT:
break;
case PBOOK_SLEEP_NOW:
for (i = 0; i < pmac_ide_count; ++i) {
ide_hwif_t *hwif;
int dn;
if ((base = pmac_ide[i].regbase) == 0)
continue;
hwif = &ide_hwifs[i];
for (dn=0; dn<MAX_DRIVES; dn++) {
if (!hwif->drives[dn].present)
continue;
idepmac_sleep_drive(&hwif->drives[dn]);
}
/* Disable irq during sleep */
disable_irq(pmac_ide[i].irq);
/* Check if this is a media bay with an IDE device or not
* a media bay.
*/
ret = check_media_bay_by_base(base, MB_CD);
if ((ret == 0) || (ret == -ENODEV))
idepmac_sleep_interface(&pmac_ide[i], base, (ret == 0));
}
break;
case PBOOK_WAKE:
big_delay = 0;
for (i = 0; i < pmac_ide_count; ++i) {
if ((base = pmac_ide[i].regbase) == 0)
continue;
/* Make sure we have sane timings */
sanitize_timings(&pmac_ide[i]);
/* Check if this is a media bay with an IDE device or not
* a media bay
*/
ret = check_media_bay_by_base(base, MB_CD);
if ((ret == 0) || (ret == -ENODEV)) {
idepmac_wake_interface(&pmac_ide[i], base, (ret == 0));
big_delay = 1;
}
}
/* Let hardware get up to speed */
if (big_delay)
mdelay(IDE_WAKEUP_DELAY_MS);
for (i = 0; i < pmac_ide_count; ++i) {
ide_hwif_t *hwif;
int used_dma, dn;
int irq_on = 0;
if ((base = pmac_ide[i].regbase) == 0)
continue;
hwif = &ide_hwifs[i];
for (dn=0; dn<MAX_DRIVES; dn++) {
ide_drive_t *drive = &hwif->drives[dn];
if (!drive->present)
continue;
/* We don't have re-configured DMA yet */
used_dma = drive->using_dma;
drive->using_dma = 0;
idepmac_wake_drive(drive, base);
if (!irq_on) {
enable_irq(pmac_ide[i].irq);
irq_on = 1;
}
idepmac_wake_device(drive, used_dma);
}
if (!irq_on)
enable_irq(pmac_ide[i].irq);
}
break;
}
return PBOOK_SLEEP_OK;
}
#endif /* CONFIG_PMAC_PBOOK */