/*
* arch/ppc64/kernel/rtas-proc.c
* Copyright (C) 2000 Tilmann Bitterberg
* (tilmann@bitterberg.de)
*
* RTAS (Runtime Abstraction Services) stuff
* Intention is to provide a clean user interface
* to use the RTAS.
*
* TODO:
* Split off a header file and maybe move it to a different
* location. Write Documentation on what the /proc/rtas/ entries
* actually do.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/ctype.h>
#include <linux/time.h>
#include <linux/string.h>
#include <asm/uaccess.h>
#include <asm/bitops.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/machdep.h> /* for ppc_md */
#include <asm/time.h>
/* Token for Sensors */
#define KEY_SWITCH 0x0001
#define ENCLOSURE_SWITCH 0x0002
#define THERMAL_SENSOR 0x0003
#define LID_STATUS 0x0004
#define POWER_SOURCE 0x0005
#define BATTERY_VOLTAGE 0x0006
#define BATTERY_REMAINING 0x0007
#define BATTERY_PERCENTAGE 0x0008
#define EPOW_SENSOR 0x0009
#define BATTERY_CYCLESTATE 0x000a
#define BATTERY_CHARGING 0x000b
/* IBM specific sensors */
#define IBM_SURVEILLANCE 0x2328 /* 9000 */
#define IBM_FANRPM 0x2329 /* 9001 */
#define IBM_VOLTAGE 0x232a /* 9002 */
#define IBM_DRCONNECTOR 0x232b /* 9003 */
#define IBM_POWERSUPPLY 0x232c /* 9004 */
#define IBM_INTQUEUE 0x232d /* 9005 */
/* Status return values */
#define SENSOR_CRITICAL_HIGH 13
#define SENSOR_WARNING_HIGH 12
#define SENSOR_NORMAL 11
#define SENSOR_WARNING_LOW 10
#define SENSOR_CRITICAL_LOW 9
#define SENSOR_SUCCESS 0
#define SENSOR_HW_ERROR -1
#define SENSOR_BUSY -2
#define SENSOR_NOT_EXIST -3
#define SENSOR_DR_ENTITY -9000
/* Location Codes */
#define LOC_SCSI_DEV_ADDR 'A'
#define LOC_SCSI_DEV_LOC 'B'
#define LOC_CPU 'C'
#define LOC_DISKETTE 'D'
#define LOC_ETHERNET 'E'
#define LOC_FAN 'F'
#define LOC_GRAPHICS 'G'
/* reserved / not used 'H' */
#define LOC_IO_ADAPTER 'I'
/* reserved / not used 'J' */
#define LOC_KEYBOARD 'K'
#define LOC_LCD 'L'
#define LOC_MEMORY 'M'
#define LOC_NV_MEMORY 'N'
#define LOC_MOUSE 'O'
#define LOC_PLANAR 'P'
#define LOC_OTHER_IO 'Q'
#define LOC_PARALLEL 'R'
#define LOC_SERIAL 'S'
#define LOC_DEAD_RING 'T'
#define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
#define LOC_VOLTAGE 'V'
#define LOC_SWITCH_ADAPTER 'W'
#define LOC_OTHER 'X'
#define LOC_FIRMWARE 'Y'
#define LOC_SCSI 'Z'
/* Tokens for indicators */
#define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
#define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
#define SYSTEM_POWER_STATE 0x0003
#define WARNING_LIGHT 0x0004
#define DISK_ACTIVITY_LIGHT 0x0005
#define HEX_DISPLAY_UNIT 0x0006
#define BATTERY_WARNING_TIME 0x0007
#define CONDITION_CYCLE_REQUEST 0x0008
#define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
#define DR_ACTION 0x2329 /* 9001 */
#define DR_INDICATOR 0x232a /* 9002 */
/* 9003 - 9004: Vendor specific */
#define GLOBAL_INTERRUPT_QUEUE 0x232d /* 9005 */
/* 9006 - 9999: Vendor specific */
/* other */
#define MAX_SENSORS 17 /* I only know of 17 sensors */
#define MAX_LINELENGTH 256
#define SENSOR_PREFIX "ibm,sensor-"
#define cel_to_fahr(x) ((x*9/5)+32)
/* Globals */
static struct rtas_sensors sensors;
static struct device_node *rtas_node = NULL;
static unsigned long power_on_time = 0; /* Save the time the user set */
static char progress_led[MAX_LINELENGTH];
static unsigned long rtas_tone_frequency = 1000;
static unsigned long rtas_tone_volume = 0;
static unsigned int open_token = 0;
static int set_time_for_power_on = RTAS_UNKNOWN_SERVICE;
static int set_time_of_day = RTAS_UNKNOWN_SERVICE;
static int get_sensor_state = RTAS_UNKNOWN_SERVICE;
static int set_indicator = RTAS_UNKNOWN_SERVICE;
extern struct proc_dir_entry *proc_ppc64_root;
extern struct proc_dir_entry *rtas_proc_dir;
extern spinlock_t proc_ppc64_lock;
/* ****************STRUCTS******************************************* */
struct individual_sensor {
unsigned int token;
unsigned int quant;
};
struct rtas_sensors {
struct individual_sensor sensor[MAX_SENSORS];
unsigned int quant;
};
/* ****************************************************************** */
/* Declarations */
static int ppc_rtas_sensor_read(char * buf, char ** start, off_t off,
int count, int *eof, void *data);
static ssize_t ppc_rtas_clock_read(struct file * file, char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_clock_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_progress_read(struct file * file, char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_progress_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_poweron_read(struct file * file, char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_poweron_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_freq_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_freq_read(struct file * file, char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_volume_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_volume_read(struct file * file, char * buf,
size_t count, loff_t *ppos);
static int ppc_rtas_errinjct_open(struct inode *inode, struct file *file);
static int ppc_rtas_errinjct_release(struct inode *inode, struct file *file);
static ssize_t ppc_rtas_errinjct_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t ppc_rtas_errinjct_read(struct file *file, char *buf,
size_t count, loff_t *ppos);
struct file_operations ppc_rtas_poweron_operations = {
.read = ppc_rtas_poweron_read,
.write = ppc_rtas_poweron_write
};
struct file_operations ppc_rtas_progress_operations = {
.read = ppc_rtas_progress_read,
.write = ppc_rtas_progress_write
};
struct file_operations ppc_rtas_clock_operations = {
.read = ppc_rtas_clock_read,
.write = ppc_rtas_clock_write
};
struct file_operations ppc_rtas_tone_freq_operations = {
.read = ppc_rtas_tone_freq_read,
.write = ppc_rtas_tone_freq_write
};
struct file_operations ppc_rtas_tone_volume_operations = {
.read = ppc_rtas_tone_volume_read,
.write = ppc_rtas_tone_volume_write
};
struct file_operations ppc_rtas_errinjct_operations = {
.open = ppc_rtas_errinjct_open,
.read = ppc_rtas_errinjct_read,
.write = ppc_rtas_errinjct_write,
.release = ppc_rtas_errinjct_release
};
int ppc_rtas_find_all_sensors (void);
int ppc_rtas_process_sensor(struct individual_sensor s, int state,
int error, char * buf);
char * ppc_rtas_process_error(int error);
int get_location_code(struct individual_sensor s, char * buf);
int check_location_string (char *c, char * buf);
int check_location (char *c, int idx, char * buf);
/* ****************************************************************** */
/* MAIN */
/* ****************************************************************** */
void proc_rtas_init(void)
{
struct proc_dir_entry *entry;
int display_character;
int errinjct_token;
rtas_node = find_devices("rtas");
if ((rtas_node == NULL) || (systemcfg->platform == PLATFORM_ISERIES_LPAR)) {
return;
}
spin_lock(&proc_ppc64_lock);
if (proc_ppc64_root == NULL) {
proc_ppc64_root = proc_mkdir("ppc64", 0);
if (!proc_ppc64_root) {
spin_unlock(&proc_ppc64_lock);
return;
}
}
spin_unlock(&proc_ppc64_lock);
if (rtas_proc_dir == NULL) {
rtas_proc_dir = proc_mkdir("rtas", proc_ppc64_root);
}
if (rtas_proc_dir == NULL) {
printk(KERN_ERR "Failed to create /proc/ppc64/rtas in rtas_init\n");
return;
}
/*
* /proc/rtas entries
* only create entries if rtas token exists for desired function
*/
set_time_of_day = rtas_token("set-time-of-day");
if (set_time_of_day != RTAS_UNKNOWN_SERVICE) {
entry=create_proc_entry("clock",S_IRUGO|S_IWUSR,rtas_proc_dir);
if (entry) entry->proc_fops = &ppc_rtas_clock_operations;
}
set_time_for_power_on = rtas_token("set-time-for-power-on");
if (set_time_for_power_on != RTAS_UNKNOWN_SERVICE) {
entry=create_proc_entry("poweron",S_IWUSR|S_IRUGO,rtas_proc_dir);
if (entry) entry->proc_fops = &ppc_rtas_poweron_operations;
}
get_sensor_state = rtas_token("get-sensor-state");
if (get_sensor_state != RTAS_UNKNOWN_SERVICE) {
create_proc_read_entry("sensors", S_IRUGO, rtas_proc_dir,
ppc_rtas_sensor_read, NULL);
}
set_indicator = rtas_token("set-indicator");
if (set_indicator != RTAS_UNKNOWN_SERVICE) {
entry=create_proc_entry("frequency",S_IWUSR|S_IRUGO,rtas_proc_dir);
if (entry) entry->proc_fops = &ppc_rtas_tone_freq_operations;
entry=create_proc_entry("volume",S_IWUSR|S_IRUGO,rtas_proc_dir);
if (entry) entry->proc_fops = &ppc_rtas_tone_volume_operations;
}
display_character = rtas_token("display-character");
if ((display_character != RTAS_UNKNOWN_SERVICE) ||
(set_indicator != RTAS_UNKNOWN_SERVICE)) {
entry=create_proc_entry("progress",S_IRUGO|S_IWUSR,rtas_proc_dir);
if (entry) entry->proc_fops = &ppc_rtas_progress_operations;
}
#ifdef CONFIG_RTAS_ERRINJCT
errinjct_token = rtas_token("ibm,errinjct");
if (errinjct_token != RTAS_UNKNOWN_SERVICE) {
entry=create_proc_entry("errinjct",S_IWUSR|S_IRUGO,rtas_proc_dir);
if (entry) entry->proc_fops = &ppc_rtas_errinjct_operations;
}
#endif
}
/* ****************************************************************** */
/* POWER-ON-TIME */
/* ****************************************************************** */
static ssize_t ppc_rtas_poweron_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
char stkbuf[40]; /* its small, its on stack */
struct rtc_time tm;
unsigned long nowtime;
char *dest;
int error;
if (39 < count)
count = 39;
if (copy_from_user(stkbuf, buf, count))
return -EFAULT;
stkbuf[count] = 0;
nowtime = simple_strtoul(stkbuf, &dest, 10);
if (*dest != '\0' && *dest != '\n') {
printk("ppc_rtas_poweron_write: Invalid time\n");
return count;
}
power_on_time = nowtime; /* save the time */
to_tm(nowtime, &tm);
error = rtas_call(set_time_for_power_on, 7, 1, NULL,
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
if (error != 0)
printk(KERN_WARNING "error: setting poweron time returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_poweron_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
char stkbuf[40]; /* its small, its on stack */
int n;
loff_t pos = *ppos;
if (power_on_time == 0)
n = snprintf(stkbuf, 40, "Power on time not set\n");
else
n = snprintf(stkbuf, 40, "%lu\n", power_on_time);
int sn = strlen(stkbuf) +1;
if (pos != (unsigned)pos || pos >= sn)
return 0;
if (n > sn - pos)
n = sn - pos;
if (n > count)
n = count;
if (copy_to_user(buf, stkbuf + pos, n))
return -EFAULT;
*ppos = pos + n;
return n;
}
/* ****************************************************************** */
/* PROGRESS */
/* ****************************************************************** */
static ssize_t ppc_rtas_progress_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
unsigned long hex;
if (count >= MAX_LINELENGTH)
count = MAX_LINELENGTH -1;
if (copy_from_user(progress_led, buf, count))
return -EFAULT;
progress_led[count] = 0;
/* Lets see if the user passed hexdigits */
hex = simple_strtoul(progress_led, NULL, 10);
ppc_md.progress((char *)progress_led, hex);
return count;
/* clear the line */ /* ppc_md.progress(" ", 0xffff);*/
}
/* ****************************************************************** */
static ssize_t ppc_rtas_progress_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
int n = 0, sn;
loff_t pos = *ppos;
if (progress_led == NULL)
return 0;
char * tmpbuf = kmalloc(MAX_LINELENGTH, GFP_KERNEL);
if (!tmpbuf) {
printk(KERN_ERR "error: kmalloc failed\n");
return -ENOMEM;
}
n = sprintf (tmpbuf, "%s\n", progress_led);
sn = strlen (tmpbuf) +1;
if (pos != (unsigned)pos || pos >= sn) {
kfree(tmpbuf);
return 0;
}
if (n > sn - pos)
n = sn - pos;
if (n > count)
n = count;
if (copy_to_user(buf, tmpbuf + pos), n) {
kfree(tmpbuf);
return -EFAULT;
}
kfree(tmpbuf);
*ppos = pos + n;
return n;
}
/* ****************************************************************** */
/* CLOCK */
/* ****************************************************************** */
static ssize_t ppc_rtas_clock_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
char stkbuf[40]; /* its small, its on stack */
struct rtc_time tm;
unsigned long nowtime;
char *dest;
int error;
if (39 < count)
count = 39;
if (copy_from_user(stkbuf, buf, count))
return -EFAULT;
stkbuf[count] = 0;
nowtime = simple_strtoul(stkbuf, &dest, 10);
if (*dest != '\0' && *dest != '\n') {
printk("ppc_rtas_clock_write: Invalid time\n");
return count;
}
to_tm(nowtime, &tm);
error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
if (error != 0)
printk(KERN_WARNING "error: setting the clock returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_clock_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
unsigned int year, mon, day, hour, min, sec;
unsigned long *ret = kmalloc(4*8, GFP_KERNEL);
int n, error;
loff_t pos = *ppos;
error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
year = ret[0]; mon = ret[1]; day = ret[2];
hour = ret[3]; min = ret[4]; sec = ret[5];
char stkbuf[40]; /* its small, its on stack */
if (error != 0){
printk(KERN_WARNING "error: reading the clock returned: %s\n",
ppc_rtas_process_error(error));
n = snprintf(stkbuf, 40, "0");
} else {
n = snprintf(stkbuf, 40, "%lu\n", mktime(year, mon, day, hour, min, sec));
}
kfree(ret);
int sn = strlen(stkbuf) +1;
if (pos != (unsigned)pos || pos >= sn)
return 0;
if (n > sn - pos)
n = sn - pos;
if (n > count)
n = count;
if (copy_to_user(buf, stkbuf + pos, n))
return -EFAULT;
*ppos = pos + n;
return n;
}
/* ****************************************************************** */
/* SENSOR STUFF */
/* ****************************************************************** */
static int ppc_rtas_sensor_read(char * buf, char ** start, off_t off,
int count, int *eof, void *data)
{
int i,j,n;
unsigned long ret;
int state, error;
char *buffer;
if (count < 0)
return -EINVAL;
/* May not be enough */
buffer = kmalloc(MAX_LINELENGTH*MAX_SENSORS, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
memset(buffer, 0, MAX_LINELENGTH*MAX_SENSORS);
n = sprintf ( buffer , "RTAS (RunTime Abstraction Services) Sensor Information\n");
n += sprintf ( buffer+n, "%-17s\t%-15s\t%-15s\tLocation\n", "Sensor", "Value", "Condition");
n += sprintf ( buffer+n, "***************************************************************************\n");
if (ppc_rtas_find_all_sensors() != 0) {
n += sprintf ( buffer+n, "\nNo sensors are available\n");
goto return_string;
}
for (i=0; i<sensors.quant; i++) {
j = sensors.sensor[i].quant;
/* A sensor may have multiple instances */
while (j >= 0) {
error = rtas_call(get_sensor_state, 2, 2, &ret,
sensors.sensor[i].token,
sensors.sensor[i].quant - j);
state = (int) ret;
n += ppc_rtas_process_sensor(sensors.sensor[i], state,
error, buffer+n );
n += sprintf (buffer+n, "\n");
j--;
} /* while */
} /* for */
return_string:
if (off >= strlen(buffer)) {
*eof = 1;
kfree(buffer);
return 0;
}
if (n > strlen(buffer) - off)
n = strlen(buffer) - off;
if (n > count)
n = count;
else
*eof = 1;
memcpy(buf, buffer + off, n);
*start = buf;
kfree(buffer);
return n;
}
/* ****************************************************************** */
int ppc_rtas_find_all_sensors (void)
{
unsigned int *utmp;
int len, i;
utmp = (unsigned int *) get_property(rtas_node, "rtas-sensors", &len);
if (utmp == NULL) {
printk (KERN_ERR "error: could not get rtas-sensors\n");
return 1;
}
sensors.quant = len / 8; /* int + int */
for (i=0; i<sensors.quant; i++) {
sensors.sensor[i].token = *utmp++;
sensors.sensor[i].quant = *utmp++;
}
return 0;
}
/* ****************************************************************** */
/*
* Builds a string of what rtas returned
*/
char * ppc_rtas_process_error(int error)
{
switch (error) {
case SENSOR_CRITICAL_HIGH:
return "(critical high)";
case SENSOR_WARNING_HIGH:
return "(warning high)";
case SENSOR_NORMAL:
return "(normal)";
case SENSOR_WARNING_LOW:
return "(warning low)";
case SENSOR_CRITICAL_LOW:
return "(critical low)";
case SENSOR_SUCCESS:
return "(read ok)";
case SENSOR_HW_ERROR:
return "(hardware error)";
case SENSOR_BUSY:
return "(busy)";
case SENSOR_NOT_EXIST:
return "(non existant)";
case SENSOR_DR_ENTITY:
return "(dr entity removed)";
default:
return "(UNKNOWN)";
}
}
/* ****************************************************************** */
/*
* Builds a string out of what the sensor said
*/
int ppc_rtas_process_sensor(struct individual_sensor s, int state,
int error, char * buf)
{
/* Defined return vales */
const char * key_switch[] = { "Off", "Normal", "Secure", "Maintenance" };
const char * enclosure_switch[] = { "Closed", "Open" };
const char * lid_status[] = { " ", "Open", "Closed" };
const char * power_source[] = { "AC", "Battery", "AC & Battery" };
const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
const char * epow_sensor[] = {
"EPOW Reset", "Cooling warning", "Power warning",
"System shutdown", "System halt", "EPOW main enclosure",
"EPOW power off" };
const char * battery_cyclestate[] = { "None", "In progress", "Requested" };
const char * battery_charging[] = { "Charging", "Discharching", "No current flow" };
const char * ibm_drconnector[] = { "Empty", "Present" };
const char * ibm_intqueue[] = { "Disabled", "Enabled" };
int temperature = 0;
int unknown = 0;
int n = 0;
char *label_string = NULL;
const char **value_arr = NULL;
int value_arrsize = 0;
/* What kind of sensor do we have here? */
switch (s.token) {
case KEY_SWITCH:
label_string = "Key switch:";
value_arrsize = sizeof(key_switch)/sizeof(char *);
value_arr = key_switch;
break;
case ENCLOSURE_SWITCH:
label_string = "Enclosure switch:";
value_arrsize = sizeof(enclosure_switch)/sizeof(char *);
value_arr = enclosure_switch;
break;
case THERMAL_SENSOR:
label_string = "Temp. (°C/°F):";
temperature = 1;
break;
case LID_STATUS:
label_string = "Lid status:";
value_arrsize = sizeof(lid_status)/sizeof(char *);
value_arr = lid_status;
break;
case POWER_SOURCE:
label_string = "Power source:";
value_arrsize = sizeof(power_source)/sizeof(char *);
value_arr = power_source;
break;
case BATTERY_VOLTAGE:
label_string = "Battery voltage:";
break;
case BATTERY_REMAINING:
label_string = "Battery remaining:";
value_arrsize = sizeof(battery_remaining)/sizeof(char *);
value_arr = battery_remaining;
break;
case BATTERY_PERCENTAGE:
label_string = "Battery percentage:";
break;
case EPOW_SENSOR:
label_string = "EPOW Sensor:";
value_arrsize = sizeof(epow_sensor)/sizeof(char *);
value_arr = epow_sensor;
break;
case BATTERY_CYCLESTATE:
label_string = "Battery cyclestate:";
value_arrsize = sizeof(battery_cyclestate)/sizeof(char *);
value_arr = battery_cyclestate;
break;
case BATTERY_CHARGING:
label_string = "Battery Charging:";
value_arrsize = sizeof(battery_charging)/sizeof(char *);
value_arr = battery_charging;
break;
case IBM_SURVEILLANCE:
label_string = "Surveillance:";
break;
case IBM_FANRPM:
label_string = "Fan (rpm):";
break;
case IBM_VOLTAGE:
label_string = "Voltage (mv):";
break;
case IBM_DRCONNECTOR:
label_string = "DR connector:";
value_arrsize = sizeof(ibm_drconnector)/sizeof(char *);
value_arr = ibm_drconnector;
break;
case IBM_POWERSUPPLY:
label_string = "Powersupply:";
break;
case IBM_INTQUEUE:
label_string = "Interrupt queue:";
value_arrsize = sizeof(ibm_intqueue)/sizeof(char *);
value_arr = ibm_intqueue;
break;
default:
n += sprintf(buf+n, "Unkown sensor (type %d), ignoring it\n",
s.token);
unknown = 1;
break;
}
if (label_string)
n += sprintf(buf+n, "%-17s\t", label_string);
if (value_arr && state >= 0 && state < value_arrsize) {
n += sprintf(buf+n, "%-15s\t", value_arr[state]);
} else {
if (temperature) {
n += sprintf(buf+n, "%2d / %2d \t", state, cel_to_fahr(state));
} else
n += sprintf(buf+n, "%-10d\t", state);
}
if (unknown == 0) {
n += sprintf ( buf+n, "%-15s\t", ppc_rtas_process_error(error));
n += get_location_code(s, buf+n);
}
return n;
}
/* ****************************************************************** */
int check_location (char *c, int idx, char * buf)
{
int n = 0;
switch (*(c+idx)) {
case LOC_PLANAR:
n += sprintf ( buf, "Planar #%c", *(c+idx+1));
break;
case LOC_CPU:
n += sprintf ( buf, "CPU #%c", *(c+idx+1));
break;
case LOC_FAN:
n += sprintf ( buf, "Fan #%c", *(c+idx+1));
break;
case LOC_RACKMOUNTED:
n += sprintf ( buf, "Rack #%c", *(c+idx+1));
break;
case LOC_VOLTAGE:
n += sprintf ( buf, "Voltage #%c", *(c+idx+1));
break;
case LOC_LCD:
n += sprintf ( buf, "LCD #%c", *(c+idx+1));
break;
case '.':
n += sprintf ( buf, "- %c", *(c+idx+1));
default:
n += sprintf ( buf, "Unknown location");
break;
}
return n;
}
/* ****************************************************************** */
/*
* Format:
* ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
* the '.' may be an abbrevation
*/
int check_location_string (char *c, char *buf)
{
int n=0,i=0;
while (c[i]) {
if (isalpha(c[i]) || c[i] == '.') {
n += check_location(c, i, buf+n);
}
else if (c[i] == '/' || c[i] == '-')
n += sprintf(buf+n, " at ");
i++;
}
return n;
}
/* ****************************************************************** */
int get_location_code(struct individual_sensor s, char * buffer)
{
char rstr[512], tmp[10], tmp2[10];
int n=0, i=0, llen, len;
/* char *buf = kmalloc(MAX_LINELENGTH, GFP_KERNEL); */
char *ret;
static int pos = 0; /* remember position where buffer was */
/* construct the sensor number like 0003 */
/* fill with zeros */
n = sprintf(tmp, "%d", s.token);
len = strlen(tmp);
while (strlen(tmp) < 4)
n += sprintf (tmp+n, "0");
/* invert the string */
while (tmp[i]) {
if (i<len)
tmp2[4-len+i] = tmp[i];
else
tmp2[3-i] = tmp[i];
i++;
}
tmp2[4] = '\0';
sprintf (rstr, SENSOR_PREFIX"%s", tmp2);
ret = (char *) get_property(rtas_node, rstr, &llen);
n=0;
if (ret == NULL || ret[0] == '\0') {
n += sprintf ( buffer+n, "--- ");/* does not have a location */
} else {
char t[50];
ret += pos;
n += check_location_string(ret, buffer + n);
n += sprintf ( buffer+n, " ");
/* see how many characters we have printed */
snprintf( t, 50, "%s ", ret);
pos += strlen(t);
if (pos >= llen) pos=0;
}
return n;
}
/* ****************************************************************** */
/* INDICATORS - Tone Frequency */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_freq_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
char stkbuf[40]; /* its small, its on stack */
unsigned long freq;
char *dest;
int error;
if (39 < count)
count = 39;
if (copy_from_user(stkbuf, buf, count))
return -EFAULT;
stkbuf[count] = 0;
freq = simple_strtoul(stkbuf, &dest, 10);
if (*dest != '\0' && *dest != '\n') {
printk("ppc_rtas_tone_freq_write: Invalid tone freqency\n");
return count;
}
if (freq < 0) freq = 0;
rtas_tone_frequency = freq; /* save it for later */
error = rtas_call(set_indicator, 3, 1, NULL,
TONE_FREQUENCY, 0, freq);
if (error != 0)
printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_freq_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
int n, sn;
char stkbuf[40]; /* its small, its on stack */
loff_t pos = *ppos;
n = snprintf(stkbuf, 40, "%lu\n", rtas_tone_frequency);
sn = strlen(stkbuf) +1;
if (pos != (unsigned)pos || pos >= sn)
return 0;
if (n > sn - pos)
n = sn - pos;
if (n > count)
n = count;
if (copy_to_user(buf, stkbuf + pos, n))
return -EFAULT;
*ppos = pos + n;
return n;
}
/* ****************************************************************** */
/* INDICATORS - Tone Volume */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_volume_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
char stkbuf[40]; /* its small, its on stack */
unsigned long volume;
char *dest;
int error;
if (39 < count)
count = 39;
if (copy_from_user(stkbuf, buf, count))
return -EFAULT;
stkbuf[count] = 0;
volume = simple_strtoul(stkbuf, &dest, 10);
if (*dest != '\0' && *dest != '\n') {
printk("ppc_rtas_tone_volume_write: Invalid tone volume\n");
return count;
}
if (volume < 0) volume = 0;
if (volume > 100) volume = 100;
rtas_tone_volume = volume; /* save it for later */
error = rtas_call(set_indicator, 3, 1, NULL,
TONE_VOLUME, 0, volume);
if (error != 0)
printk(KERN_WARNING "error: setting tone volume returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_volume_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
int n, sn;
char stkbuf[40]; /* its small, its on stack */
loff_t pos = *ppos;
n = snprintf(stkbuf, 40, "%lu\n", rtas_tone_volume);
sn = strlen(stkbuf) +1;
if (pos != (unsigned)pos || pos >= sn)
return 0;
if (n > sn - pos)
n = sn - pos;
if (n > count)
n = count;
if (copy_to_user(buf, stkbuf + pos, n))
return -EFAULT;
*ppos = pos + n;
return n;
}
/* ****************************************************************** */
/* ERRINJCT */
/* ****************************************************************** */
static int ppc_rtas_errinjct_open(struct inode *inode, struct file *file)
{
int rc;
/* We will only allow one process to use error inject at a
time. Since errinjct is usually only used for testing,
this shouldn't be an issue */
if (open_token) {
return -EAGAIN;
}
rc = rtas_errinjct_open();
if (rc < 0) {
return -EIO;
}
open_token = rc;
return 0;
}
static ssize_t ppc_rtas_errinjct_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
char * tmpbuf;
char * ei_token;
char * workspace = NULL;
size_t max_len;
int token_len;
int rc;
/* Verify the errinjct token length */
if (count < ERRINJCT_TOKEN_LEN) {
max_len = count;
} else {
max_len = ERRINJCT_TOKEN_LEN;
}
tmpbuf = (char *) kmalloc(max_len, GFP_KERNEL);
if (!tmpbuf) {
printk(KERN_WARNING "error: kmalloc failed\n");
return -ENOMEM;
}
if (copy_from_user (tmpbuf, buf, max_len)) {
kfree(tmpbuf);
return -EFAULT;
}
token_len = strnlen(tmpbuf, max_len);
token_len++; /* Add one for the null termination */
ei_token = (char *)kmalloc(token_len, GFP_KERNEL);
if (!ei_token) {
printk(KERN_WARNING "error: kmalloc failed\n");
kfree(tmpbuf);
return -ENOMEM;
}
strncpy(ei_token, tmpbuf, token_len);
if (count > token_len + WORKSPACE_SIZE) {
count = token_len + WORKSPACE_SIZE;
}
buf += token_len;
/* check if there is a workspace */
if (count > token_len) {
/* Verify the workspace size */
if ((count - token_len) > WORKSPACE_SIZE) {
max_len = WORKSPACE_SIZE;
} else {
max_len = count - token_len;
}
workspace = (char *)kmalloc(max_len, GFP_KERNEL);
if (!workspace) {
printk(KERN_WARNING "error: failed kmalloc\n");
kfree(tmpbuf);
kfree(ei_token);
return -ENOMEM;
}
memcpy(workspace, tmpbuf, max_len);
}
rc = rtas_errinjct(open_token, ei_token, workspace);
if (count > token_len) {
kfree(workspace);
}
kfree(ei_token);
kfree(tmpbuf);
return rc < 0 ? rc : count;
}
static int ppc_rtas_errinjct_release(struct inode *inode, struct file *file)
{
int rc;
rc = rtas_errinjct_close(open_token);
if (rc) {
return rc;
}
open_token = 0;
return 0;
}
static ssize_t ppc_rtas_errinjct_read(struct file *file, char *buf,
size_t count, loff_t *ppos)
{
char * buffer;
int i, sn;
int n = 0;
loff_t pos = *ppos;
int m = MAX_ERRINJCT_TOKENS * (ERRINJCT_TOKEN_LEN+1);
buffer = (char *)kmalloc(m, GFP_KERNEL);
if (!buffer) {
printk(KERN_ERR "error: kmalloc failed\n");
return -ENOMEM;
}
for (i = 0; i < MAX_ERRINJCT_TOKENS && ei_token_list[i].value; i++) {
n += snprintf(buffer+n, m-n, ei_token_list[i].name);
n += snprintf(buffer+n, m-n, "\n");
}
sn = strlen(buffer) +1;
if (pos != (unsigned)pos || pos >= sn) {
kfree(buffer);
return 0;
}
if (n > sn - pos)
n = sn - pos;
if (n > count)
n = count;
if (copy_to_user(buf, buffer + pos, n)) {
kfree(buffer);
return -EFAULT;
}
*ppos = pos + n;
kfree(buffer);
return n;
}