/*
* Port for PPC64 David Engebretsen, IBM Corp.
* Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/bootmem.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/flight_recorder.h>
#include <asm/ppcdebug.h>
#include <asm/naca.h>
#include <asm/pci_dma.h>
#include <asm/machdep.h>
#include "pci.h"
/* pci_io_base -- the base address from which io bars are offsets.
* This is the lowest I/O base address (so bar values are always positive),
* and it *must* be the start of ISA space if an ISA bus exists because
* ISA drivers use hard coded offsets. If no ISA bus exists a dummy
* page is mapped and isa_io_limit prevents access to it.
*/
unsigned long isa_io_base = 0; /* NULL if no ISA bus */
unsigned long pci_io_base = 0;
unsigned long isa_mem_base = 0;
unsigned long pci_dram_offset = 0;
/******************************************************************
* Forward declare of prototypes
******************************************************************/
static void pcibios_fixup_resources(struct pci_dev* dev);
static void fixup_broken_pcnet32(struct pci_dev* dev);
static void fixup_windbond_82c105(struct pci_dev* dev);
void fixup_resources(struct pci_dev* dev);
void iSeries_pcibios_init(void);
void pSeries_pcibios_init(void);
int pci_assign_all_busses = 0;
struct pci_controller* hose_head;
struct pci_controller** hose_tail = &hose_head;
LIST_HEAD(iSeries_Global_Device_List);
/*******************************************************************
* Counters and control flags.
*******************************************************************/
long Pci_Io_Read_Count = 0;
long Pci_Io_Write_Count = 0;
long Pci_Cfg_Read_Count = 0;
long Pci_Cfg_Write_Count= 0;
long Pci_Error_Count = 0;
int Pci_Retry_Max = 7; /* Retry set to 7 times */
int Pci_Error_Flag = 1; /* Set Retry Error on. */
int Pci_Trace_Flag = 0;
/******************************************************************
*
******************************************************************/
int global_phb_number = 0; /* Global phb counter */
int Pci_Large_Bus_System = 0;
int Pci_Set_IOA_Address = 0;
int Pci_Manage_Phb_Space = 0;
struct pci_controller *phbtab[PCI_MAX_PHB];
static int pci_bus_count;
/* Cached ISA bridge dev. */
struct pci_dev *ppc64_isabridge_dev = NULL;
struct pci_fixup pcibios_fixups[] = {
{ PCI_FIXUP_HEADER, PCI_VENDOR_ID_TRIDENT, PCI_ANY_ID, fixup_broken_pcnet32 },
{ PCI_FIXUP_HEADER, PCI_VENDOR_ID_WINBOND, PCI_DEVICE_ID_WINBOND_82C105, fixup_windbond_82c105 },
{ PCI_FIXUP_HEADER, PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources },
{ 0 }
};
static void fixup_broken_pcnet32(struct pci_dev* dev)
{
if ((dev->class>>8 == PCI_CLASS_NETWORK_ETHERNET)) {
dev->vendor = PCI_VENDOR_ID_AMD;
pci_write_config_word(dev, PCI_VENDOR_ID, PCI_VENDOR_ID_AMD);
pci_name_device(dev);
}
}
static void fixup_windbond_82c105(struct pci_dev* dev)
{
/* Assume the windbond 82c105 is the IDE controller on a
* p610. We should probably be more careful in case
* someone tries to plug in a similar adapter.
*/
unsigned int reg;
printk("Using INTC for W82c105 IDE controller.\n");
pci_read_config_dword(dev, 0x40, ®);
/* Enable LEGIRQ to use INTC instead of ISA interrupts */
pci_write_config_dword(dev, 0x40, reg | (1<<11));
}
/* Given an mmio phys address, find a pci device that implements
* this address. This is of course expensive, but only used
* for device initialization or error paths.
* For io BARs it is assumed the pci_io_base has already been added
* into addr.
*
* Bridges are ignored although they could be used to optimize the search.
*/
struct pci_dev *pci_find_dev_by_addr(unsigned long addr)
{
struct pci_dev *dev;
int i;
unsigned long ioaddr;
ioaddr = (addr > _IO_BASE) ? addr - _IO_BASE : 0;
pci_for_each_dev(dev) {
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
continue;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
unsigned long start = pci_resource_start(dev,i);
unsigned long end = pci_resource_end(dev,i);
unsigned int flags = pci_resource_flags(dev,i);
if (start == 0 || ~start == 0 ||
end == 0 || ~end == 0)
continue;
if ((flags & IORESOURCE_IO) &&
(ioaddr >= start && ioaddr <= end))
return dev;
else if ((flags & IORESOURCE_MEM) &&
(addr >= start && addr <= end))
return dev;
}
}
return NULL;
}
void pcibios_fixup_pbus_ranges(struct pci_bus *pbus,
struct pbus_set_ranges_data *pranges)
{
}
void
pcibios_update_resource(struct pci_dev *dev, struct resource *root,
struct resource *res, int resource)
{
u32 new, check;
int reg;
struct pci_controller* hose = PCI_GET_PHB_PTR(dev);
new = res->start;
if (hose && res->flags & IORESOURCE_MEM)
new -= hose->pci_mem_offset;
new |= (res->flags & PCI_REGION_FLAG_MASK);
if (resource < 6) {
reg = PCI_BASE_ADDRESS_0 + 4*resource;
} else if (resource == PCI_ROM_RESOURCE) {
res->flags |= PCI_ROM_ADDRESS_ENABLE;
reg = dev->rom_base_reg;
} else {
/* Somebody might have asked allocation of a non-standard resource */
return;
}
pci_write_config_dword(dev, reg, new);
pci_read_config_dword(dev, reg, &check);
if ((new ^ check) & ((new & PCI_BASE_ADDRESS_SPACE_IO) ? PCI_BASE_ADDRESS_IO_MASK : PCI_BASE_ADDRESS_MEM_MASK)) {
printk(KERN_ERR "PCI: Error while updating region "
"%s/%d (%08x != %08x)\n", dev->slot_name, resource,
new, check);
}
}
static void
pcibios_fixup_resources(struct pci_dev* dev)
{
fixup_resources(dev);
}
/*
* We need to avoid collisions with `mirrored' VGA ports
* and other strange ISA hardware, so we always want the
* addresses to be allocated in the 0x000-0x0ff region
* modulo 0x400.
*
* Why? Because some silly external IO cards only decode
* the low 10 bits of the IO address. The 0x00-0xff region
* is reserved for motherboard devices that decode all 16
* bits, so it's ok to allocate at, say, 0x2800-0x28ff,
* but we want to try to avoid allocating at 0x2900-0x2bff
* which might have be mirrored at 0x0100-0x03ff..
*/
void
pcibios_align_resource(void *data, struct resource *res, unsigned long size,
unsigned long align)
{
struct pci_dev *dev = data;
if (res->flags & IORESOURCE_IO) {
unsigned long start = res->start;
if (size > 0x100) {
printk(KERN_ERR "PCI: Can not align I/O Region %s %s because size %ld is too large.\n",
dev->slot_name, res->name, size);
}
if (start & 0x300) {
start = (start + 0x3ff) & ~0x3ff;
res->start = start;
}
}
}
/*
* Handle resources of PCI devices. If the world were perfect, we could
* just allocate all the resource regions and do nothing more. It isn't.
* On the other hand, we cannot just re-allocate all devices, as it would
* require us to know lots of host bridge internals. So we attempt to
* keep as much of the original configuration as possible, but tweak it
* when it's found to be wrong.
*
* Known BIOS problems we have to work around:
* - I/O or memory regions not configured
* - regions configured, but not enabled in the command register
* - bogus I/O addresses above 64K used
* - expansion ROMs left enabled (this may sound harmless, but given
* the fact the PCI specs explicitly allow address decoders to be
* shared between expansion ROMs and other resource regions, it's
* at least dangerous)
*
* Our solution:
* (1) Allocate resources for all buses behind PCI-to-PCI bridges.
* This gives us fixed barriers on where we can allocate.
* (2) Allocate resources for all enabled devices. If there is
* a collision, just mark the resource as unallocated. Also
* disable expansion ROMs during this step.
* (3) Try to allocate resources for disabled devices. If the
* resources were assigned correctly, everything goes well,
* if they weren't, they won't disturb allocation of other
* resources.
* (4) Assign new addresses to resources which were either
* not configured at all or misconfigured. If explicitly
* requested by the user, configure expansion ROM address
* as well.
*/
static void __init
pcibios_allocate_bus_resources(struct list_head *bus_list)
{
struct list_head *ln;
struct pci_bus *bus;
int i;
struct resource *res, *pr;
/* Depth-First Search on bus tree */
for (ln=bus_list->next; ln != bus_list; ln=ln->next) {
bus = pci_bus_b(ln);
for (i = 0; i < 4; ++i) {
if ((res = bus->resource[i]) == NULL || !res->flags)
continue;
if (bus->parent == NULL)
pr = (res->flags & IORESOURCE_IO)?
&ioport_resource: &iomem_resource;
else
pr = pci_find_parent_resource(bus->self, res);
if (pr == res)
continue; /* transparent bus or undefined */
if (pr && request_resource(pr, res) == 0)
continue;
printk(KERN_ERR "PCI: Cannot allocate resource region "
"%d of PCI bridge %x\n", i, bus->number);
printk(KERN_ERR "PCI: resource is %lx..%lx (%lx), parent %p\n",
res->start, res->end, res->flags, pr);
}
pcibios_allocate_bus_resources(&bus->children);
}
}
static void __init
pcibios_allocate_resources(int pass)
{
struct pci_dev *dev;
int idx, disabled;
u16 command;
struct resource *r, *pr;
pci_for_each_dev(dev) {
pci_read_config_word(dev, PCI_COMMAND, &command);
for(idx = 0; idx < 6; idx++) {
r = &dev->resource[idx];
if (r->parent) /* Already allocated */
continue;
if (!r->start) /* Address not assigned at all */
continue;
if (r->flags & IORESOURCE_IO)
disabled = !(command & PCI_COMMAND_IO);
else
disabled = !(command & PCI_COMMAND_MEMORY);
if (pass == disabled) {
PPCDBG(PPCDBG_PHBINIT,
"PCI: Resource %08lx-%08lx (f=%lx, d=%d, p=%d)\n",
r->start, r->end, r->flags, disabled, pass);
pr = pci_find_parent_resource(dev, r);
if (!pr || request_resource(pr, r) < 0) {
PPCDBG(PPCDBG_PHBINIT,
"PCI: Cannot allocate resource region %d of device %s, pr = 0x%lx\n", idx, dev->slot_name, pr);
if(pr) {
PPCDBG(PPCDBG_PHBINIT,
"PCI: Cannot allocate resource 0x%lx\n", request_resource(pr,r));
}
/* We'll assign a new address later */
r->end -= r->start;
r->start = 0;
}
}
}
if (!pass) {
r = &dev->resource[PCI_ROM_RESOURCE];
if (r->flags & PCI_ROM_ADDRESS_ENABLE) {
/* Turn the ROM off, leave the resource region, but keep it unregistered. */
u32 reg;
r->flags &= ~PCI_ROM_ADDRESS_ENABLE;
pci_read_config_dword(dev, dev->rom_base_reg, ®);
pci_write_config_dword(dev, dev->rom_base_reg, reg & ~PCI_ROM_ADDRESS_ENABLE);
}
}
}
}
static void __init
pcibios_assign_resources(void)
{
struct pci_dev *dev;
int idx;
struct resource *r;
pci_for_each_dev(dev) {
int class = dev->class >> 8;
/* Don't touch classless devices and host bridges */
if (!class || class == PCI_CLASS_BRIDGE_HOST)
continue;
for(idx=0; idx<6; idx++) {
r = &dev->resource[idx];
/*
* Don't touch IDE controllers and I/O ports of video cards!
*/
if ((class == PCI_CLASS_STORAGE_IDE && idx < 4) ||
(class == PCI_CLASS_DISPLAY_VGA && (r->flags & IORESOURCE_IO)))
continue;
/*
* We shall assign a new address to this resource, either because
* the BIOS forgot to do so or because we have decided the old
* address was unusable for some reason.
*/
if (!r->start && r->end && ppc_md.pcibios_enable_device_hook &&
!ppc_md.pcibios_enable_device_hook(dev, 1))
pci_assign_resource(dev, idx);
}
if (0) { /* don't assign ROMs */
r = &dev->resource[PCI_ROM_RESOURCE];
r->end -= r->start;
r->start = 0;
if (r->end)
pci_assign_resource(dev, PCI_ROM_RESOURCE);
}
}
}
int
pcibios_enable_resources(struct pci_dev *dev, int mask)
{
u16 cmd, old_cmd;
int idx;
struct resource *r;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
old_cmd = cmd;
for(idx=0; idx<6; idx++) {
if(!(mask & (1<<idx)))
continue;
r = &dev->resource[idx];
if (!r->start && r->end) {
printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n", dev->slot_name);
return -EINVAL;
}
if (r->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (r->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
if (dev->resource[PCI_ROM_RESOURCE].start)
cmd |= PCI_COMMAND_MEMORY;
if (cmd != old_cmd) {
printk("PCI: Enabling device %s (%04x -> %04x)\n", dev->slot_name, old_cmd, cmd);
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
/*
* Allocate pci_controller(phb) initialized common variables.
*/
struct pci_controller * __init
pci_alloc_pci_controller(char *model, enum phb_types controller_type)
{
struct pci_controller *hose;
PPCDBG(PPCDBG_PHBINIT, "PCI: Allocate pci_controller for %s\n",model);
hose = (struct pci_controller *)alloc_bootmem(sizeof(struct pci_controller));
if(hose == NULL) {
printk(KERN_ERR "PCI: Allocate pci_controller failed.\n");
return NULL;
}
memset(hose, 0, sizeof(struct pci_controller));
if(strlen(model) < 8)
strcpy(hose->what,model);
else
memcpy(hose->what,model,7);
hose->type = controller_type;
hose->global_number = global_phb_number;
phbtab[global_phb_number++] = hose;
*hose_tail = hose;
hose_tail = &hose->next;
return hose;
}
/*
* This fixup is arch independent and probably should go somewhere else.
*/
void __init
pcibios_generic_fixup(void)
{
struct pci_dev *dev;
/* Fix miss-identified vendor AMD pcnet32 adapters. */
dev = NULL;
while ((dev = pci_find_device(PCI_VENDOR_ID_TRIDENT, PCI_DEVICE_ID_AMD_LANCE, dev)) != NULL &&
dev->class == (PCI_CLASS_NETWORK_ETHERNET << 8))
dev->vendor = PCI_VENDOR_ID_AMD;
}
/***********************************************************************
*
*
*
***********************************************************************/
void __init
pcibios_init(void)
{
struct pci_controller *hose;
struct pci_bus *bus;
int next_busno;
#ifndef CONFIG_PPC_ISERIES
pSeries_pcibios_init();
#else
iSeries_pcibios_init();
#endif
ppc64_boot_msg(0x40, "PCI Probe");
printk("PCI: Probing PCI hardware\n");
PPCDBG(PPCDBG_BUSWALK,"PCI: Probing PCI hardware\n");
/* Scan all of the recorded PCI controllers. */
for (next_busno = 0, hose = hose_head; hose; hose = hose->next) {
hose->last_busno = 0xff;
bus = pci_scan_bus(hose->first_busno, hose->ops, hose->arch_data);
hose->bus = bus;
hose->last_busno = bus->subordinate;
if (pci_assign_all_busses || next_busno <= hose->last_busno)
next_busno = hose->last_busno+1;
}
pci_bus_count = next_busno;
/* Call machine dependant fixup */
if (ppc_md.pcibios_fixup) {
ppc_md.pcibios_fixup();
}
/* Generic fixups */
pcibios_generic_fixup();
/* Allocate and assign resources */
pcibios_allocate_bus_resources(&pci_root_buses);
pcibios_allocate_resources(0);
pcibios_allocate_resources(1);
pcibios_assign_resources();
#ifndef CONFIG_PPC_ISERIES
pci_fix_bus_sysdata();
create_tce_tables();
PPCDBG(PPCDBG_BUSWALK,"pSeries create_tce_tables()\n");
#endif
/* Cache the location of the ISA bridge (if we have one) */
ppc64_isabridge_dev = pci_find_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
if (ppc64_isabridge_dev != NULL )
printk("ISA bridge at %s\n", ppc64_isabridge_dev->slot_name);
printk("PCI: Probing PCI hardware done\n");
PPCDBG(PPCDBG_BUSWALK,"PCI: Probing PCI hardware done.\n");
ppc64_boot_msg(0x41, "PCI Done");
}
int __init
pcibios_assign_all_busses(void)
{
return pci_assign_all_busses;
}
unsigned long resource_fixup(struct pci_dev * dev, struct resource * res,
unsigned long start, unsigned long size)
{
return start;
}
void __init pcibios_fixup_bus(struct pci_bus *bus)
{
#ifndef CONFIG_PPC_ISERIES
struct pci_controller *phb = PCI_GET_PHB_PTR(bus);
struct resource *res;
int i;
if (bus->parent == NULL) {
/* This is a host bridge - fill in its resources */
phb->bus = bus;
bus->resource[0] = res = &phb->io_resource;
if (!res->flags)
BUG(); /* No I/O resource for this PHB? */
for (i = 0; i < 3; ++i) {
res = &phb->mem_resources[i];
if (!res->flags) {
if (i == 0)
BUG(); /* No memory resource for this PHB? */
}
bus->resource[i+1] = res;
}
} else {
/* This is a subordinate bridge */
pci_read_bridge_bases(bus);
for (i = 0; i < 4; ++i) {
if ((res = bus->resource[i]) == NULL)
continue;
if (!res->flags)
continue;
if (res == pci_find_parent_resource(bus->self, res)) {
/* Transparent resource -- don't try to "fix" it. */
continue;
}
if (res->flags & IORESOURCE_IO) {
unsigned long offset = (unsigned long)phb->io_base_virt - pci_io_base;
res->start += offset;
res->end += offset;
} else if (phb->pci_mem_offset
&& (res->flags & IORESOURCE_MEM)) {
if (res->start < phb->pci_mem_offset) {
res->start += phb->pci_mem_offset;
res->end += phb->pci_mem_offset;
}
}
}
}
#endif
if ( ppc_md.pcibios_fixup_bus )
ppc_md.pcibios_fixup_bus(bus);
}
char __init *pcibios_setup(char *str)
{
return str;
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
u16 cmd, old_cmd;
int idx;
struct resource *r;
PPCDBG(PPCDBG_BUSWALK,"PCI: %s for device %s \n",__FUNCTION__,dev->slot_name);
if (ppc_md.pcibios_enable_device_hook)
if (ppc_md.pcibios_enable_device_hook(dev, 0))
return -EINVAL;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
old_cmd = cmd;
for (idx=0; idx<6; idx++) {
r = &dev->resource[idx];
if (!r->start && r->end) {
printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n", dev->slot_name);
return -EINVAL;
}
if (r->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (r->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
if (cmd != old_cmd) {
printk("PCI: Enabling device %s (%04x -> %04x)\n",
dev->slot_name, old_cmd, cmd);
PPCDBG(PPCDBG_BUSWALK,"PCI: Enabling device %s \n",dev->slot_name);
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
struct pci_controller*
pci_bus_to_hose(int bus)
{
struct pci_controller* hose = hose_head;
for (; hose; hose = hose->next)
if (bus >= hose->first_busno && bus <= hose->last_busno)
return hose;
return NULL;
}
void*
pci_bus_io_base(unsigned int bus)
{
struct pci_controller *hose;
hose = pci_bus_to_hose(bus);
if (!hose)
return NULL;
return hose->io_base_virt;
}
unsigned long
pci_bus_io_base_phys(unsigned int bus)
{
struct pci_controller *hose;
hose = pci_bus_to_hose(bus);
if (!hose)
return 0;
return hose->io_base_phys;
}
unsigned long
pci_bus_mem_base_phys(unsigned int bus)
{
struct pci_controller *hose;
hose = pci_bus_to_hose(bus);
if (!hose)
return 0;
return hose->pci_mem_offset;
}
/*
* Return the index of the PCI controller for device pdev.
*/
int pci_controller_num(struct pci_dev *dev)
{
struct pci_controller *hose = PCI_GET_PHB_PTR(dev);
return hose->global_number;
}
/*
* Platform support for /proc/bus/pci/X/Y mmap()s,
* modelled on the sparc64 implementation by Dave Miller.
* -- paulus.
*/
/*
* Adjust vm_pgoff of VMA such that it is the physical page offset
* corresponding to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static __inline__ int
__pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pci_controller *hose = PCI_GET_PHB_PTR(dev);
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long io_offset = 0;
int i, res_bit;
if (hose == 0)
return -EINVAL; /* should never happen */
/* If memory, add on the PCI bridge address offset */
if (mmap_state == pci_mmap_mem) {
offset += hose->pci_mem_offset;
res_bit = IORESOURCE_MEM;
} else {
io_offset = (unsigned long)hose->io_base_virt;
offset += io_offset;
res_bit = IORESOURCE_IO;
}
/*
* Check that the offset requested corresponds to one of the
* resources of the device.
*/
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &dev->resource[i];
int flags = rp->flags;
/* treat ROM as memory (should be already) */
if (i == PCI_ROM_RESOURCE)
flags |= IORESOURCE_MEM;
/* Active and same type? */
if ((flags & res_bit) == 0)
continue;
/* In the range of this resource? */
if (offset < (rp->start & PAGE_MASK) || offset > rp->end)
continue;
/* found it! construct the final physical address */
if (mmap_state == pci_mmap_io)
offset += hose->io_base_phys - io_offset;
vma->vm_pgoff = offset >> PAGE_SHIFT;
return 0;
}
return -EINVAL;
}
/*
* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
* mapping.
*/
static __inline__ void
__pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
vma->vm_flags |= VM_SHM | VM_LOCKED | VM_IO;
}
/*
* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static __inline__ void
__pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state, int write_combine)
{
long prot = pgprot_val(vma->vm_page_prot);
/* XXX would be nice to have a way to ask for write-through */
prot |= _PAGE_NO_CACHE;
prot |= _PAGE_GUARDED;
vma->vm_page_prot = __pgprot(prot);
}
/*
* Perform the actual remap of the pages for a PCI device mapping, as
* appropriate for this architecture. The region in the process to map
* is described by vm_start and vm_end members of VMA, the base physical
* address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine)
{
int ret;
ret = __pci_mmap_make_offset(dev, vma, mmap_state);
if (ret < 0)
return ret;
__pci_mmap_set_flags(dev, vma, mmap_state);
__pci_mmap_set_pgprot(dev, vma, mmap_state, write_combine);
ret = remap_page_range(vma->vm_start, vma->vm_pgoff << PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot);
return ret;
}
/* Provide information on locations of various I/O regions in physical
* memory. Do this on a per-card basis so that we choose the right
* root bridge.
* Note that the returned IO or memory base is a physical address
*/
long
sys_pciconfig_iobase(long which, unsigned long bus, unsigned long devfn)
{
struct pci_controller* hose = pci_bus_to_hose(bus);
long result = -EOPNOTSUPP;
if (!hose)
return -ENODEV;
switch (which) {
case IOBASE_BRIDGE_NUMBER:
return (long)hose->first_busno;
case IOBASE_MEMORY:
return (long)hose->pci_mem_offset;
case IOBASE_IO:
return (long)hose->io_base_phys;
case IOBASE_ISA_IO:
return (long)isa_io_base;
case IOBASE_ISA_MEM:
return (long)isa_mem_base;
}
return result;
}
/************************************************************************/
/* Formats the device information and location for service. */
/* - Pass in pci_dev* pointer to the device. */
/* - Pass in buffer to place the data. Danger here is the buffer must */
/* be as big as the client says it is. Should be at least 128 bytes.*/
/* Return will the length of the string data put in the buffer. */
/* The brand specific method device_Location is called. */
/* Format: */
/* PCI: Bus 0, Device 26, Vendor 0x12AE Frame 1, Card C10 Ethernet */
/* PCI: Bus 0, Device 26, Vendor 0x12AE Location U0.3-P1-I8 Ethernet */
/* For pSeries, see the Product Topology in the RS/6000 Architecture. */
/* For iSeries, see the Service Manuals. */
/************************************************************************/
int format_device_location(struct pci_dev* PciDev,char* BufPtr, int BufferSize)
{
struct device_node* DevNode = (struct device_node*)PciDev->sysdata;
int LineLen = 0;
if (DevNode != NULL && BufferSize >= 128) {
LineLen += device_Location(PciDev,BufPtr+LineLen);
LineLen += sprintf(BufPtr+LineLen," %12s",pci_class_name(PciDev->class >> 8) );
}
return LineLen;
}
/************************************************************************
* Saves the config registers for a device. *
************************************************************************
* Note: This does byte reads so the data may appear byte swapped, *
* The data returned in the pci_config_reg_save_area structure can be *
* used to the restore of the data. If the save failed, the data *
* will not be restore. Yes I know, you are most likey toast. *
************************************************************************/
int pci_save_config_regs(struct pci_dev* PciDev,struct pci_config_reg_save_area* SaveArea)
{
memset(SaveArea,0x00,sizeof(struct pci_config_reg_save_area) );
SaveArea->PciDev = PciDev;
SaveArea->RCode = 0;
SaveArea->Register = 0;
/******************************************************************
* Save All the Regs, NOTE: restore skips the first 16 bytes. *
******************************************************************/
while (SaveArea->Register < REG_SAVE_SIZE && SaveArea->RCode == 0) {
SaveArea->RCode = pci_read_config_byte(PciDev, SaveArea->Register, &SaveArea->Regs[SaveArea->Register]);
++SaveArea->Register;
}
if (SaveArea->RCode != 0) { /* Ouch */
SaveArea->Flags = 0x80;
printk("PCI: pci_restore_save_regs failed! %p\n 0x%04X",PciDev,SaveArea->RCode);
PCIFR( "pci_restore_save_regs failed! %p\n 0x%04X",PciDev,SaveArea->RCode);
}
else {
SaveArea->Flags = 0x01;
}
return SaveArea->RCode;
}
/************************************************************************
* Restores the registers saved via the save function. See the save *
* function for details. *
************************************************************************/
int pci_restore_config_regs(struct pci_dev* PciDev,struct pci_config_reg_save_area* SaveArea)
{
if (SaveArea->PciDev != PciDev || SaveArea->Flags == 0x80 || SaveArea->RCode != 0) {
printk("PCI: pci_restore_config_regs failed! %p\n",PciDev);
return -1;
}
/******************************************************************
* Don't touch the Cmd or BIST regs, user must restore those. *
* Restore PCI_VENDOR_ID & PCI_DEVICE_ID *
* Restore PCI_CACHE_LINE_SIZE & PCI_LATENCY_TIMER *
* Restore Saved Regs from 0x10 to 0x3F *
******************************************************************/
SaveArea->Register = 0;
while(SaveArea->Register < REG_SAVE_SIZE && SaveArea->RCode == 0) {
SaveArea->RCode = pci_write_config_byte(PciDev,SaveArea->Register,SaveArea->Regs[SaveArea->Register]);
++SaveArea->Register;
if ( SaveArea->Register == PCI_COMMAND) SaveArea->Register = PCI_CACHE_LINE_SIZE;
else if (SaveArea->Register == PCI_HEADER_TYPE) SaveArea->Register = PCI_BASE_ADDRESS_0;
}
if (SaveArea->RCode != 0) {
printk("PCI: pci_restore_config_regs failed! %p\n 0x%04X",PciDev,SaveArea->RCode);
PCIFR( "pci_restore_config_regs failed! %p\n 0x%04X",PciDev,SaveArea->RCode);
}
return SaveArea->RCode;
}
/************************************************************************/
/* Interface to toggle the reset line */
/* Time is in .1 seconds, need for seconds. */
/************************************************************************/
int pci_reset_device(struct pci_dev* PciDev, int AssertTime, int DelayTime)
{
unsigned long AssertDelay, WaitDelay;
int RtnCode;
/********************************************************************
* Set defaults, Assert is .5 second, Wait is 3 seconds.
********************************************************************/
if (AssertTime == 0) AssertDelay = ( 5 * HZ)/10;
else AssertDelay = (AssertTime*HZ)/10;
if (WaitDelay == 0) WaitDelay = (30 * HZ)/10;
else WaitDelay = (DelayTime* HZ)/10;
/********************************************************************
* Assert reset, wait, de-assert reset, wait for IOA to reset.
* - Don't waste the CPU time on jiffies.
********************************************************************/
RtnCode = pci_set_reset(PciDev,1);
if (RtnCode == 0) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(AssertDelay); /* Sleep for the time */
RtnCode = pci_set_reset(PciDev,0);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(WaitDelay);
}
if (RtnCode == 0) {
PCIFR( "Bus%3d, Device%3d, Reset\n",PciDev->bus->number,PCI_SLOT(PciDev->devfn) );
}
else {
printk("PCI: Bus%3d, Device%3d, Reset Failed:0x%04X\n",PciDev->bus->number,PCI_SLOT(PciDev->devfn),RtnCode );
PCIFR( "Bus%3d, Device%3d, Reset Failed:0x%04X\n",PciDev->bus->number,PCI_SLOT(PciDev->devfn),RtnCode );
}
return RtnCode;
}
/*****************************************************
* Dump Resource information
*****************************************************/
void dumpResources(struct resource* Resource)
{
if(Resource != NULL) {
int Flags = 0x00000F00 & Resource->flags;
if(Resource->start == 0 && Resource->end == 0) return;
else if(Resource->start == Resource->end ) return;
else {
if (Flags == IORESOURCE_IO) udbg_printf("IO.:");
else if(Flags == IORESOURCE_MEM) udbg_printf("MEM:");
else if(Flags == IORESOURCE_IRQ) udbg_printf("IRQ:");
else udbg_printf("0x%02X:",Resource->flags);
}
udbg_printf("0x%016LX / 0x%016LX (0x%08X)\n",
Resource->start, Resource->end, Resource->end - Resource->start);
}
}
int resourceSize(struct resource* Resource)
{
if(Resource->start == 0 && Resource->end == 0) return 0;
else if(Resource->start == Resource->end ) return 0;
else return (Resource->end-1)-Resource->start;
}
/*****************************************************
* Dump PHB information for Debug
*****************************************************/
void dumpPci_Controller(struct pci_controller* phb)
{
udbg_printf("\tpci_controller= 0x%016LX\n", phb);
if (phb != NULL) {
udbg_printf("\twhat & type = %s 0x%02X\n ",phb->what,phb->type);
udbg_printf("\tbus = ");
if (phb->bus != NULL) udbg_printf("0x%02X\n", phb->bus->number);
else udbg_printf("<NULL>\n");
udbg_printf("\tarch_data = 0x%016LX\n", phb->arch_data);
udbg_printf("\tfirst_busno = 0x%02X\n", phb->first_busno);
udbg_printf("\tlast_busno = 0x%02X\n", phb->last_busno);
udbg_printf("\tio_base_virt* = 0x%016LX\n", phb->io_base_virt);
udbg_printf("\tio_base_phys = 0x%016LX\n", phb->io_base_phys);
udbg_printf("\tpci_mem_offset= 0x%016LX\n", phb->pci_mem_offset);
udbg_printf("\tpci_io_offset = 0x%016LX\n", phb->pci_io_offset);
udbg_printf("\tcfg_addr = 0x%016LX\n", phb->cfg_addr);
udbg_printf("\tcfg_data = 0x%016LX\n", phb->cfg_data);
udbg_printf("\tphb_regs = 0x%016LX\n", phb->phb_regs);
udbg_printf("\tchip_regs = 0x%016LX\n", phb->chip_regs);
udbg_printf("\tResources\n");
dumpResources(&phb->io_resource);
if (phb->mem_resource_count > 0) dumpResources(&phb->mem_resources[0]);
if (phb->mem_resource_count > 1) dumpResources(&phb->mem_resources[1]);
if (phb->mem_resource_count > 2) dumpResources(&phb->mem_resources[2]);
udbg_printf("\tglobal_num = 0x%02X\n", phb->global_number);
udbg_printf("\tlocal_num = 0x%02X\n", phb->local_number);
}
}
/*****************************************************
* Dump PHB information for Debug
*****************************************************/
void dumpPci_Bus(struct pci_bus* Pci_Bus)
{
int i;
udbg_printf("\tpci_bus = 0x%016LX \n",Pci_Bus);
if (Pci_Bus != NULL) {
udbg_printf("\tnumber = 0x%02X \n",Pci_Bus->number);
udbg_printf("\tprimary = 0x%02X \n",Pci_Bus->primary);
udbg_printf("\tsecondary = 0x%02X \n",Pci_Bus->secondary);
udbg_printf("\tsubordinate = 0x%02X \n",Pci_Bus->subordinate);
for (i=0;i<4;++i) {
if(Pci_Bus->resource[i] == NULL) continue;
if(Pci_Bus->resource[i]->start == 0 && Pci_Bus->resource[i]->end == 0) break;
udbg_printf("\tResources[%d]",i);
dumpResources(Pci_Bus->resource[i]);
}
}
}
/*****************************************************
* Dump Device information for Debug
*****************************************************/
void dumpPci_Dev(struct pci_dev* Pci_Dev)
{
int i;
udbg_printf("\tpci_dev* = 0x%p\n",Pci_Dev);
if ( Pci_Dev == NULL ) return;
udbg_printf("\tname = %s \n",Pci_Dev->name);
udbg_printf("\tbus* = 0x%p\n",Pci_Dev->bus);
udbg_printf("\tsysdata* = 0x%p\n",Pci_Dev->sysdata);
udbg_printf("\tDevice = 0x%4X%02X:%02X.%02X 0x%04X:%04X\n",
PCI_GET_PHB_NUMBER(Pci_Dev),
PCI_GET_BUS_NUMBER(Pci_Dev),
PCI_SLOT(Pci_Dev->devfn),
PCI_FUNC(Pci_Dev->devfn),
Pci_Dev->vendor,
Pci_Dev->device);
udbg_printf("\tHdr/Irq = 0x%02X/0x%02X \n",Pci_Dev->hdr_type,Pci_Dev->irq);
for (i=0;i<DEVICE_COUNT_RESOURCE;++i) {
if (Pci_Dev->resource[i].start == 0 && Pci_Dev->resource[i].end == 0) continue;
udbg_printf("\tResources[%d] ",i);
dumpResources(&Pci_Dev->resource[i]);
}
dumpResources(&Pci_Dev->resource[i]);
}