/*
* mf.c
* Copyright (C) 2001 Troy D. Armstrong IBM Corporation
*
* This modules exists as an interface between a Linux secondary partition
* running on an iSeries and the primary partition's Virtual Service
* Processor (VSP) object. The VSP has final authority over powering on/off
* all partitions in the iSeries. It also provides miscellaneous low-level
* machine facility type operations.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <asm/iSeries/mf.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/iSeries/HvLpConfig.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <asm/nvram.h>
#include <asm/time.h>
#include <asm/iSeries/ItSpCommArea.h>
#include <asm/iSeries/mf_proc.h>
#include <asm/iSeries/iSeries_proc.h>
#include <asm/uaccess.h>
#include <linux/pci.h>
extern struct pci_dev * iSeries_vio_dev;
/*
* This is the structure layout for the Machine Facilities LPAR event
* flows.
*/
struct VspCmdData;
struct CeMsgData;
union SafeCast
{
u64 ptrAsU64;
void *ptr;
};
typedef void (*CeMsgCompleteHandler)( void *token, struct CeMsgData *vspCmdRsp );
struct CeMsgCompleteData
{
CeMsgCompleteHandler xHdlr;
void *xToken;
};
struct VspRspData
{
struct semaphore *xSemaphore;
struct VspCmdData *xResponse;
};
struct IoMFLpEvent
{
struct HvLpEvent xHvLpEvent;
u16 xSubtypeRc;
u16 xRsvd1;
u32 xRsvd2;
union
{
struct AllocData
{
u16 xSize;
u16 xType;
u32 xCount;
u16 xRsvd3;
u8 xRsvd4;
HvLpIndex xTargetLp;
} xAllocData;
struct CeMsgData
{
u8 xCEMsg[12];
char xReserved[4];
struct CeMsgCompleteData *xToken;
} xCEMsgData;
struct VspCmdData
{
union SafeCast xTokenUnion;
u16 xCmd;
HvLpIndex xLpIndex;
u8 xRc;
u32 xReserved1;
union VspCmdSubData
{
struct
{
u64 xState;
} xGetStateOut;
struct
{
u64 xIplType;
} xGetIplTypeOut, xFunction02SelectIplTypeIn;
struct
{
u64 xIplMode;
} xGetIplModeOut, xFunction02SelectIplModeIn;
struct
{
u64 xPage[4];
} xGetSrcHistoryIn;
struct
{
u64 xFlag;
} xGetAutoIplWhenPrimaryIplsOut,
xSetAutoIplWhenPrimaryIplsIn,
xWhiteButtonPowerOffIn,
xFunction08FastPowerOffIn,
xIsSpcnRackPowerIncompleteOut;
struct
{
u64 xToken;
u64 xAddressType;
u64 xSide;
u32 xTransferLength;
u32 xOffset;
} xSetKernelImageIn,
xGetKernelImageIn,
xSetKernelCmdLineIn,
xGetKernelCmdLineIn;
struct
{
u32 xTransferLength;
} xGetKernelImageOut,xGetKernelCmdLineOut;
u8 xReserved2[80];
} xSubData;
} xVspCmd;
} xUnion;
};
/*
* All outgoing event traffic is kept on a FIFO queue. The first
* pointer points to the one that is outstanding, and all new
* requests get stuck on the end. Also, we keep a certain number of
* preallocated stack elements so that we can operate very early in
* the boot up sequence (before kmalloc is ready).
*/
struct StackElement
{
struct StackElement * next;
struct IoMFLpEvent event;
MFCompleteHandler hdlr;
char dmaData[72];
unsigned dmaDataLength;
unsigned remoteAddress;
};
static spinlock_t spinlock;
static struct StackElement * head = NULL;
static struct StackElement * tail = NULL;
static struct StackElement * avail = NULL;
static struct StackElement prealloc[16];
/*
* Put a stack element onto the available queue, so it can get reused.
* Attention! You must have the spinlock before calling!
*/
void free( struct StackElement * element )
{
if ( element != NULL )
{
element->next = avail;
avail = element;
}
}
/*
* Enqueue the outbound event onto the stack. If the queue was
* empty to begin with, we must also issue it via the Hypervisor
* interface. There is a section of code below that will touch
* the first stack pointer without the protection of the spinlock.
* This is OK, because we know that nobody else will be modifying
* the first pointer when we do this.
*/
static int signalEvent( struct StackElement * newElement )
{
int rc = 0;
unsigned long flags;
int go = 1;
struct StackElement * element;
HvLpEvent_Rc hvRc;
/* enqueue the event */
if ( newElement != NULL )
{
spin_lock_irqsave( &spinlock, flags );
if ( head == NULL )
head = newElement;
else {
go = 0;
tail->next = newElement;
}
newElement->next = NULL;
tail = newElement;
spin_unlock_irqrestore( &spinlock, flags );
}
/* send the event */
while ( go )
{
go = 0;
/* any DMA data to send beforehand? */
if ( head->dmaDataLength > 0 )
HvCallEvent_dmaToSp( head->dmaData, head->remoteAddress, head->dmaDataLength, HvLpDma_Direction_LocalToRemote );
hvRc = HvCallEvent_signalLpEvent(&head->event.xHvLpEvent);
if ( hvRc != HvLpEvent_Rc_Good )
{
printk( KERN_ERR "mf.c: HvCallEvent_signalLpEvent() failed with %d\n", (int)hvRc );
spin_lock_irqsave( &spinlock, flags );
element = head;
head = head->next;
if ( head != NULL )
go = 1;
spin_unlock_irqrestore( &spinlock, flags );
if ( element == newElement )
rc = -EIO;
else {
if ( element->hdlr != NULL )
{
union SafeCast mySafeCast;
mySafeCast.ptrAsU64 = element->event.xHvLpEvent.xCorrelationToken;
(*element->hdlr)( mySafeCast.ptr, -EIO );
}
}
spin_lock_irqsave( &spinlock, flags );
free( element );
spin_unlock_irqrestore( &spinlock, flags );
}
}
return rc;
}
/*
* Allocate a new StackElement structure, and initialize it.
*/
static struct StackElement * newStackElement( void )
{
struct StackElement * newElement = NULL;
HvLpIndex primaryLp = HvLpConfig_getPrimaryLpIndex();
unsigned long flags;
if ( newElement == NULL )
{
spin_lock_irqsave( &spinlock, flags );
if ( avail != NULL )
{
newElement = avail;
avail = avail->next;
}
spin_unlock_irqrestore( &spinlock, flags );
}
if ( newElement == NULL )
newElement = kmalloc(sizeof(struct StackElement),GFP_ATOMIC);
if ( newElement == NULL )
{
printk( KERN_ERR "mf.c: unable to kmalloc %ld bytes\n", sizeof(struct StackElement) );
return NULL;
}
memset( newElement, 0, sizeof(struct StackElement) );
newElement->event.xHvLpEvent.xFlags.xValid = 1;
newElement->event.xHvLpEvent.xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
newElement->event.xHvLpEvent.xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
newElement->event.xHvLpEvent.xFlags.xFunction = HvLpEvent_Function_Int;
newElement->event.xHvLpEvent.xType = HvLpEvent_Type_MachineFac;
newElement->event.xHvLpEvent.xSourceLp = HvLpConfig_getLpIndex();
newElement->event.xHvLpEvent.xTargetLp = primaryLp;
newElement->event.xHvLpEvent.xSizeMinus1 = sizeof(newElement->event)-1;
newElement->event.xHvLpEvent.xRc = HvLpEvent_Rc_Good;
newElement->event.xHvLpEvent.xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primaryLp,HvLpEvent_Type_MachineFac);
newElement->event.xHvLpEvent.xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primaryLp,HvLpEvent_Type_MachineFac);
return newElement;
}
static int signalVspInstruction( struct VspCmdData *vspCmd )
{
struct StackElement * newElement = newStackElement();
int rc = 0;
struct VspRspData response;
DECLARE_MUTEX_LOCKED(Semaphore);
response.xSemaphore = &Semaphore;
response.xResponse = vspCmd;
if ( newElement == NULL )
rc = -ENOMEM;
else {
newElement->event.xHvLpEvent.xSubtype = 6;
newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('V'<<8)+('I'<<0);
newElement->event.xUnion.xVspCmd.xTokenUnion.ptr = &response;
newElement->event.xUnion.xVspCmd.xCmd = vspCmd->xCmd;
newElement->event.xUnion.xVspCmd.xLpIndex = HvLpConfig_getLpIndex();
newElement->event.xUnion.xVspCmd.xRc = 0xFF;
newElement->event.xUnion.xVspCmd.xReserved1 = 0;
memcpy(&(newElement->event.xUnion.xVspCmd.xSubData),&(vspCmd->xSubData), sizeof(vspCmd->xSubData));
mb();
rc = signalEvent(newElement);
}
if (rc == 0)
{
down(&Semaphore);
}
return rc;
}
/*
* Send a 12-byte CE message to the primary partition VSP object
*/
static int signalCEMsg( char * ceMsg, void * token )
{
struct StackElement * newElement = newStackElement();
int rc = 0;
if ( newElement == NULL )
rc = -ENOMEM;
else {
newElement->event.xHvLpEvent.xSubtype = 0;
newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('C'<<8)+('E'<<0);
memcpy( newElement->event.xUnion.xCEMsgData.xCEMsg, ceMsg, 12 );
newElement->event.xUnion.xCEMsgData.xToken = token;
rc = signalEvent(newElement);
}
return rc;
}
/*
* Send a 12-byte CE message and DMA data to the primary partition VSP object
*/
static int dmaAndSignalCEMsg( char * ceMsg, void * token, void * dmaData, unsigned dmaDataLength, unsigned remoteAddress )
{
struct StackElement * newElement = newStackElement();
int rc = 0;
if ( newElement == NULL )
rc = -ENOMEM;
else {
newElement->event.xHvLpEvent.xSubtype = 0;
newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('C'<<8)+('E'<<0);
memcpy( newElement->event.xUnion.xCEMsgData.xCEMsg, ceMsg, 12 );
newElement->event.xUnion.xCEMsgData.xToken = token;
memcpy( newElement->dmaData, dmaData, dmaDataLength );
newElement->dmaDataLength = dmaDataLength;
newElement->remoteAddress = remoteAddress;
rc = signalEvent(newElement);
}
return rc;
}
/*
* Initiate a nice (hopefully) shutdown of Linux. We simply are
* going to try and send the init process a SIGINT signal. If
* this fails (why?), we'll simply force it off in a not-so-nice
* manner.
*/
static int shutdown( void )
{
extern int cad_pid; /* from kernel/sys.c */
int rc = kill_proc(cad_pid,SIGINT,1);
if ( rc )
{
printk( KERN_ALERT "mf.c: SIGINT to init failed (%d), hard shutdown commencing\n", rc );
mf_powerOff();
}
else
printk( KERN_INFO "mf.c: init has been successfully notified to proceed with shutdown\n" );
return rc;
}
/*
* The primary partition VSP object is sending us a new
* event flow. Handle it...
*/
static void intReceived( struct IoMFLpEvent * event )
{
int freeIt = 0;
struct StackElement * two = NULL;
/* ack the interrupt */
event->xHvLpEvent.xRc = HvLpEvent_Rc_Good;
HvCallEvent_ackLpEvent( &event->xHvLpEvent );
/* process interrupt */
switch( event->xHvLpEvent.xSubtype )
{
case 0: /* CE message */
switch( event->xUnion.xCEMsgData.xCEMsg[3] )
{
case 0x5B: /* power control notification */
if ( (event->xUnion.xCEMsgData.xCEMsg[5]&0x20) != 0 )
{
printk( KERN_INFO "mf.c: Commencing partition shutdown\n" );
if ( shutdown() == 0 )
signalCEMsg( "\x00\x00\x00\xDB\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
}
break;
case 0xC0: /* get time */
{
if ( (head != NULL) && ( head->event.xUnion.xCEMsgData.xCEMsg[3] == 0x40 ) )
{
freeIt = 1;
if ( head->event.xUnion.xCEMsgData.xToken != 0 )
{
CeMsgCompleteHandler xHdlr = head->event.xUnion.xCEMsgData.xToken->xHdlr;
void * token = head->event.xUnion.xCEMsgData.xToken->xToken;
if (xHdlr != NULL)
(*xHdlr)( token, &(event->xUnion.xCEMsgData) );
}
}
}
break;
}
/* remove from queue */
if ( freeIt == 1 )
{
unsigned long flags;
spin_lock_irqsave( &spinlock, flags );
if ( head != NULL )
{
struct StackElement *oldHead = head;
head = head->next;
two = head;
free( oldHead );
}
spin_unlock_irqrestore( &spinlock, flags );
}
/* send next waiting event */
if ( two != NULL )
signalEvent( NULL );
break;
case 1: /* IT sys shutdown */
printk( KERN_INFO "mf.c: Commencing system shutdown\n" );
shutdown();
break;
}
}
/*
* The primary partition VSP object is acknowledging the receipt
* of a flow we sent to them. If there are other flows queued
* up, we must send another one now...
*/
static void ackReceived( struct IoMFLpEvent * event )
{
unsigned long flags;
struct StackElement * two = NULL;
unsigned long freeIt = 0;
/* handle current event */
if ( head != NULL )
{
switch( event->xHvLpEvent.xSubtype )
{
case 0: /* CE msg */
if ( event->xUnion.xCEMsgData.xCEMsg[3] == 0x40 )
{
if ( event->xUnion.xCEMsgData.xCEMsg[2] != 0 )
{
freeIt = 1;
if ( head->event.xUnion.xCEMsgData.xToken != 0 )
{
CeMsgCompleteHandler xHdlr = head->event.xUnion.xCEMsgData.xToken->xHdlr;
void * token = head->event.xUnion.xCEMsgData.xToken->xToken;
if (xHdlr != NULL)
(*xHdlr)( token, &(event->xUnion.xCEMsgData) );
}
}
} else {
freeIt = 1;
}
break;
case 4: /* allocate */
case 5: /* deallocate */
if ( head->hdlr != NULL )
{
union SafeCast mySafeCast;
mySafeCast.ptrAsU64 = event->xHvLpEvent.xCorrelationToken;
(*head->hdlr)( mySafeCast.ptr, event->xUnion.xAllocData.xCount );
}
freeIt = 1;
break;
case 6:
{
struct VspRspData *rsp = (struct VspRspData *)event->xUnion.xVspCmd.xTokenUnion.ptr;
if (rsp != NULL)
{
if (rsp->xResponse != NULL)
memcpy(rsp->xResponse, &(event->xUnion.xVspCmd), sizeof(event->xUnion.xVspCmd));
if (rsp->xSemaphore != NULL)
up(rsp->xSemaphore);
} else {
printk( KERN_ERR "mf.c: no rsp\n");
}
freeIt = 1;
}
break;
}
}
else
printk( KERN_ERR "mf.c: stack empty for receiving ack\n" );
/* remove from queue */
spin_lock_irqsave( &spinlock, flags );
if (( head != NULL ) && ( freeIt == 1 ))
{
struct StackElement *oldHead = head;
head = head->next;
two = head;
free( oldHead );
}
spin_unlock_irqrestore( &spinlock, flags );
/* send next waiting event */
if ( two != NULL )
signalEvent( NULL );
}
/*
* This is the generic event handler we are registering with
* the Hypervisor. Ensure the flows are for us, and then
* parse it enough to know if it is an interrupt or an
* acknowledge.
*/
static void hvHandler( struct HvLpEvent * event, struct pt_regs * regs )
{
if ( (event != NULL) && (event->xType == HvLpEvent_Type_MachineFac) )
{
switch( event->xFlags.xFunction )
{
case HvLpEvent_Function_Ack:
ackReceived( (struct IoMFLpEvent *)event );
break;
case HvLpEvent_Function_Int:
intReceived( (struct IoMFLpEvent *)event );
break;
default:
printk( KERN_ERR "mf.c: non ack/int event received\n" );
break;
}
}
else
printk( KERN_ERR "mf.c: alien event received\n" );
}
/*
* Global kernel interface to allocate and seed events into the
* Hypervisor.
*/
void mf_allocateLpEvents( HvLpIndex targetLp,
HvLpEvent_Type type,
unsigned size,
unsigned count,
MFCompleteHandler hdlr,
void * userToken )
{
struct StackElement * newElement = newStackElement();
int rc = 0;
if ( newElement == NULL )
rc = -ENOMEM;
else {
union SafeCast mine;
mine.ptr = userToken;
newElement->event.xHvLpEvent.xSubtype = 4;
newElement->event.xHvLpEvent.xCorrelationToken = mine.ptrAsU64;
newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('M'<<8)+('A'<<0);
newElement->event.xUnion.xAllocData.xTargetLp = targetLp;
newElement->event.xUnion.xAllocData.xType = type;
newElement->event.xUnion.xAllocData.xSize = size;
newElement->event.xUnion.xAllocData.xCount = count;
newElement->hdlr = hdlr;
rc = signalEvent(newElement);
}
if ( (rc != 0) && (hdlr != NULL) )
(*hdlr)( userToken, rc );
}
/*
* Global kernel interface to unseed and deallocate events already in
* Hypervisor.
*/
void mf_deallocateLpEvents( HvLpIndex targetLp,
HvLpEvent_Type type,
unsigned count,
MFCompleteHandler hdlr,
void * userToken )
{
struct StackElement * newElement = newStackElement();
int rc = 0;
if ( newElement == NULL )
rc = -ENOMEM;
else {
union SafeCast mine;
mine.ptr = userToken;
newElement->event.xHvLpEvent.xSubtype = 5;
newElement->event.xHvLpEvent.xCorrelationToken = mine.ptrAsU64;
newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('M'<<8)+('D'<<0);
newElement->event.xUnion.xAllocData.xTargetLp = targetLp;
newElement->event.xUnion.xAllocData.xType = type;
newElement->event.xUnion.xAllocData.xCount = count;
newElement->hdlr = hdlr;
rc = signalEvent(newElement);
}
if ( (rc != 0) && (hdlr != NULL) )
(*hdlr)( userToken, rc );
}
/*
* Global kernel interface to tell the VSP object in the primary
* partition to power this partition off.
*/
void mf_powerOff( void )
{
printk( KERN_INFO "mf.c: Down it goes...\n" );
signalCEMsg( "\x00\x00\x00\x4D\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
for (;;);
}
/*
* Global kernel interface to tell the VSP object in the primary
* partition to reboot this partition.
*/
void mf_reboot( void )
{
printk( KERN_INFO "mf.c: Preparing to bounce...\n" );
signalCEMsg( "\x00\x00\x00\x4E\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
for (;;);
}
/*
* Display a single word SRC onto the VSP control panel.
*/
void mf_displaySrc( u32 word )
{
u8 ce[12];
memcpy( ce, "\x00\x00\x00\x4A\x00\x00\x00\x01\x00\x00\x00\x00", 12 );
ce[8] = word>>24;
ce[9] = word>>16;
ce[10] = word>>8;
ce[11] = word;
signalCEMsg( ce, NULL );
}
/*
* Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
*/
void mf_displayProgress( u16 value )
{
u8 ce[12];
u8 src[72];
memcpy( ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12 );
memcpy( src,
"\x01\x00\x00\x01"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"PROGxxxx"
" ",
72 );
src[6] = value>>8;
src[7] = value&255;
src[44] = "0123456789ABCDEF"[(value>>12)&15];
src[45] = "0123456789ABCDEF"[(value>>8)&15];
src[46] = "0123456789ABCDEF"[(value>>4)&15];
src[47] = "0123456789ABCDEF"[value&15];
dmaAndSignalCEMsg( ce, NULL, src, sizeof(src), 9*64*1024 );
}
/*
* Clear the VSP control panel. Used to "erase" an SRC that was
* previously displayed.
*/
void mf_clearSrc( void )
{
signalCEMsg( "\x00\x00\x00\x4B\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
}
/*
* Initialization code here.
*/
void mf_init( void )
{
int i;
/* initialize */
spin_lock_init( &spinlock );
for ( i = 0; i < sizeof(prealloc)/sizeof(*prealloc); ++i )
free( &prealloc[i] );
HvLpEvent_registerHandler( HvLpEvent_Type_MachineFac, &hvHandler );
/* virtual continue ack */
signalCEMsg( "\x00\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
/* initialization complete */
printk( KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities initialized\n" );
iSeries_proc_callback(&mf_proc_init);
}
void mf_setSide(char side)
{
int rc = 0;
u64 newSide = 0;
struct VspCmdData myVspCmd;
memset(&myVspCmd, 0, sizeof(myVspCmd));
if (side == 'A')
newSide = 0;
else if (side == 'B')
newSide = 1;
else if (side == 'C')
newSide = 2;
else
newSide = 3;
myVspCmd.xSubData.xFunction02SelectIplTypeIn.xIplType = newSide;
myVspCmd.xCmd = 10;
rc = signalVspInstruction(&myVspCmd);
}
char mf_getSide(void)
{
char returnValue = ' ';
int rc = 0;
struct VspCmdData myVspCmd;
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.xCmd = 2;
myVspCmd.xSubData.xFunction02SelectIplTypeIn.xIplType = 0;
mb();
rc = signalVspInstruction(&myVspCmd);
if (rc != 0)
{
return returnValue;
} else {
if (myVspCmd.xRc == 0)
{
if (myVspCmd.xSubData.xGetIplTypeOut.xIplType == 0)
returnValue = 'A';
else if (myVspCmd.xSubData.xGetIplTypeOut.xIplType == 1)
returnValue = 'B';
else if (myVspCmd.xSubData.xGetIplTypeOut.xIplType == 2)
returnValue = 'C';
else
returnValue = 'D';
}
}
return returnValue;
}
void mf_getSrcHistory(char *buffer, int size)
{
/* struct IplTypeReturnStuff returnStuff;
struct StackElement * newElement = newStackElement();
int rc = 0;
char *pages[4];
pages[0] = kmalloc(4096, GFP_ATOMIC);
pages[1] = kmalloc(4096, GFP_ATOMIC);
pages[2] = kmalloc(4096, GFP_ATOMIC);
pages[3] = kmalloc(4096, GFP_ATOMIC);
if (( newElement == NULL ) || (pages[0] == NULL) || (pages[1] == NULL) || (pages[2] == NULL) || (pages[3] == NULL))
rc = -ENOMEM;
else
{
returnStuff.xType = 0;
returnStuff.xRc = 0;
returnStuff.xDone = 0;
newElement->event.xHvLpEvent.xSubtype = 6;
newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('V'<<8)+('I'<<0);
newElement->event.xUnion.xVspCmd.xEvent = &returnStuff;
newElement->event.xUnion.xVspCmd.xCmd = 4;
newElement->event.xUnion.xVspCmd.xLpIndex = HvLpConfig_getLpIndex();
newElement->event.xUnion.xVspCmd.xRc = 0xFF;
newElement->event.xUnion.xVspCmd.xReserved1 = 0;
newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[0] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[0]));
newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[1] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[1]));
newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[2] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[2]));
newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[3] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[3]));
mb();
rc = signalEvent(newElement);
}
if (rc != 0)
{
return;
}
else
{
while (returnStuff.xDone != 1)
{
udelay(10);
}
if (returnStuff.xRc == 0)
{
memcpy(buffer, pages[0], size);
}
}
kfree(pages[0]);
kfree(pages[1]);
kfree(pages[2]);
kfree(pages[3]);*/
}
void mf_setCmdLine(const char *cmdline, int size, u64 side)
{
struct VspCmdData myVspCmd;
int rc = 0;
dma_addr_t dma_addr = 0;
char *page = pci_alloc_consistent(iSeries_vio_dev, size, &dma_addr);
if (page == NULL) {
printk(KERN_ERR "mf.c: couldn't allocate memory to set command line\n");
return;
}
copy_from_user(page, cmdline, size);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.xCmd = 31;
myVspCmd.xSubData.xSetKernelCmdLineIn.xToken = dma_addr;
myVspCmd.xSubData.xSetKernelCmdLineIn.xAddressType = HvLpDma_AddressType_TceIndex;
myVspCmd.xSubData.xSetKernelCmdLineIn.xSide = side;
myVspCmd.xSubData.xSetKernelCmdLineIn.xTransferLength = size;
mb();
rc = signalVspInstruction(&myVspCmd);
pci_free_consistent(iSeries_vio_dev, size, page, dma_addr);
}
int mf_getCmdLine(char *cmdline, int *size, u64 side)
{
struct VspCmdData myVspCmd;
int rc = 0;
int len = *size;
dma_addr_t dma_addr = pci_map_single(iSeries_vio_dev, cmdline, *size, PCI_DMA_FROMDEVICE);
memset(cmdline, 0, *size);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.xCmd = 33;
myVspCmd.xSubData.xGetKernelCmdLineIn.xToken = dma_addr;
myVspCmd.xSubData.xGetKernelCmdLineIn.xAddressType = HvLpDma_AddressType_TceIndex;
myVspCmd.xSubData.xGetKernelCmdLineIn.xSide = side;
myVspCmd.xSubData.xGetKernelCmdLineIn.xTransferLength = *size;
mb();
rc = signalVspInstruction(&myVspCmd);
if ( ! rc ) {
if (myVspCmd.xRc == 0)
{
len = myVspCmd.xSubData.xGetKernelCmdLineOut.xTransferLength;
}
/* else
{
memcpy(cmdline, "Bad cmdline", 11);
}
*/
}
pci_unmap_single(iSeries_vio_dev, dma_addr, *size, PCI_DMA_FROMDEVICE);
return len;
}
int mf_setVmlinuxChunk(const char *buffer, int size, int offset, u64 side)
{
struct VspCmdData myVspCmd;
int rc = 0;
dma_addr_t dma_addr = 0;
char *page = pci_alloc_consistent(iSeries_vio_dev, size, &dma_addr);
if (page == NULL) {
printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
return -ENOMEM;
}
copy_from_user(page, buffer, size);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.xCmd = 30;
myVspCmd.xSubData.xGetKernelImageIn.xToken = dma_addr;
myVspCmd.xSubData.xGetKernelImageIn.xAddressType = HvLpDma_AddressType_TceIndex;
myVspCmd.xSubData.xGetKernelImageIn.xSide = side;
myVspCmd.xSubData.xGetKernelImageIn.xOffset = offset;
myVspCmd.xSubData.xGetKernelImageIn.xTransferLength = size;
mb();
rc = signalVspInstruction(&myVspCmd);
if (rc == 0)
{
if (myVspCmd.xRc == 0)
{
rc = 0;
} else {
rc = -ENOMEM;
}
}
pci_free_consistent(iSeries_vio_dev, size, page, dma_addr);
return rc;
}
int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
{
struct VspCmdData myVspCmd;
int rc = 0;
int len = *size;
dma_addr_t dma_addr = pci_map_single(iSeries_vio_dev, buffer, *size, PCI_DMA_FROMDEVICE);
memset(buffer, 0, len);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.xCmd = 32;
myVspCmd.xSubData.xGetKernelImageIn.xToken = dma_addr;
myVspCmd.xSubData.xGetKernelImageIn.xAddressType = HvLpDma_AddressType_TceIndex;
myVspCmd.xSubData.xGetKernelImageIn.xSide = side;
myVspCmd.xSubData.xGetKernelImageIn.xOffset = offset;
myVspCmd.xSubData.xGetKernelImageIn.xTransferLength = len;
mb();
rc = signalVspInstruction(&myVspCmd);
if (rc == 0)
{
if (myVspCmd.xRc == 0)
{
*size = myVspCmd.xSubData.xGetKernelImageOut.xTransferLength;
} else {
rc = -ENOMEM;
}
}
pci_unmap_single(iSeries_vio_dev, dma_addr, len, PCI_DMA_FROMDEVICE);
return rc;
}
int mf_setRtcTime(unsigned long time)
{
struct rtc_time tm;
to_tm(time, &tm);
return mf_setRtc( &tm );
}
struct RtcTimeData
{
struct semaphore *xSemaphore;
struct CeMsgData xCeMsg;
int xRc;
};
void getRtcTimeComplete(void * token, struct CeMsgData *ceMsg)
{
struct RtcTimeData *rtc = (struct RtcTimeData *)token;
memcpy(&(rtc->xCeMsg), ceMsg, sizeof(rtc->xCeMsg));
rtc->xRc = 0;
up(rtc->xSemaphore);
}
static unsigned long lastsec = 1;
int mf_getRtcTime(unsigned long *time)
{
/* unsigned long usec, tsec; */
u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart));
u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1);
int year = 1970;
int year1 = ( dataWord1 >> 24 ) & 0x000000FF;
int year2 = ( dataWord1 >> 16 ) & 0x000000FF;
int sec = ( dataWord1 >> 8 ) & 0x000000FF;
int min = dataWord1 & 0x000000FF;
int hour = ( dataWord2 >> 24 ) & 0x000000FF;
int day = ( dataWord2 >> 8 ) & 0x000000FF;
int mon = dataWord2 & 0x000000FF;
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year1);
BCD_TO_BIN(year2);
year = year1 * 100 + year2;
*time = mktime(year, mon, day, hour, min, sec);
*time += ( jiffies / HZ );
/* Now THIS is a nasty hack!
* It ensures that the first two calls to mf_getRtcTime get different
* answers. That way the loop in init_time (time.c) will not think
* the clock is stuck.
*/
if ( lastsec ) {
*time -= lastsec;
--lastsec;
}
return 0;
}
int mf_getRtc( struct rtc_time * tm )
{
struct CeMsgCompleteData ceComplete;
struct RtcTimeData rtcData;
int rc = 0;
DECLARE_MUTEX_LOCKED(Semaphore);
memset(&ceComplete, 0, sizeof(ceComplete));
memset(&rtcData, 0, sizeof(rtcData));
rtcData.xSemaphore = &Semaphore;
ceComplete.xHdlr = &getRtcTimeComplete;
ceComplete.xToken = (void *)&rtcData;
rc = signalCEMsg( "\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00", &ceComplete );
if ( rc == 0 )
{
down(&Semaphore);
if ( rtcData.xRc == 0)
{
if ( ( rtcData.xCeMsg.xCEMsg[2] == 0xa9 ) ||
( rtcData.xCeMsg.xCEMsg[2] == 0xaf ) ) {
/* TOD clock is not set */
tm->tm_sec = 1;
tm->tm_min = 1;
tm->tm_hour = 1;
tm->tm_mday = 10;
tm->tm_mon = 8;
tm->tm_year = 71;
mf_setRtc( tm );
}
{
u32 dataWord1 = *((u32 *)(rtcData.xCeMsg.xCEMsg+4));
u32 dataWord2 = *((u32 *)(rtcData.xCeMsg.xCEMsg+8));
u8 year = (dataWord1 >> 16 ) & 0x000000FF;
u8 sec = ( dataWord1 >> 8 ) & 0x000000FF;
u8 min = dataWord1 & 0x000000FF;
u8 hour = ( dataWord2 >> 24 ) & 0x000000FF;
u8 day = ( dataWord2 >> 8 ) & 0x000000FF;
u8 mon = dataWord2 & 0x000000FF;
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
if ( year <= 69 )
year += 100;
tm->tm_sec = sec;
tm->tm_min = min;
tm->tm_hour = hour;
tm->tm_mday = day;
tm->tm_mon = mon;
tm->tm_year = year;
}
} else {
rc = rtcData.xRc;
tm->tm_sec = 0;
tm->tm_min = 0;
tm->tm_hour = 0;
tm->tm_mday = 15;
tm->tm_mon = 5;
tm->tm_year = 52;
}
tm->tm_wday = 0;
tm->tm_yday = 0;
tm->tm_isdst = 0;
}
return rc;
}
int mf_setRtc(struct rtc_time * tm)
{
char ceTime[12] = "\x00\x00\x00\x41\x00\x00\x00\x00\x00\x00\x00\x00";
int rc = 0;
u8 day, mon, hour, min, sec, y1, y2;
unsigned year;
year = 1900 + tm->tm_year;
y1 = year / 100;
y2 = year % 100;
sec = tm->tm_sec;
min = tm->tm_min;
hour = tm->tm_hour;
day = tm->tm_mday;
mon = tm->tm_mon + 1;
BIN_TO_BCD(sec);
BIN_TO_BCD(min);
BIN_TO_BCD(hour);
BIN_TO_BCD(mon);
BIN_TO_BCD(day);
BIN_TO_BCD(y1);
BIN_TO_BCD(y2);
ceTime[4] = y1;
ceTime[5] = y2;
ceTime[6] = sec;
ceTime[7] = min;
ceTime[8] = hour;
ceTime[10] = day;
ceTime[11] = mon;
rc = signalCEMsg( ceTime, NULL );
return rc;
}