/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SNI specific PCI support for RM200/RM300.
*
* Copyright (C) 1997 - 2000 Ralf Baechle
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#include <asm/pci_channel.h>
#include <asm/hp-lj/asic.h>
#ifdef CONFIG_PCI
volatile u32* pci_config_address_reg = (volatile u32*)0xfdead000;
volatile u32* pci_config_data_reg = (volatile u32*)0xfdead000;
#define cfgaddr(dev, where) (((dev->bus->number & 0xff) << 0x10) | \
((dev->devfn & 0xff) << 0x08) | \
(where & 0xfc))
/*
* We can't address 8 and 16 bit words directly. Instead we have to
* read/write a 32bit word and mask/modify the data we actually want.
*/
static int pcimt_read_config_byte (struct pci_dev *dev,
int where, unsigned char *val)
{
*pci_config_address_reg = cfgaddr(dev, where);
*val = (le32_to_cpu(*pci_config_data_reg) >> ((where&3)<<3)) & 0xff;
//printk("pci_read_byte 0x%x == 0x%x\n", where, *val);
return PCIBIOS_SUCCESSFUL;
}
static int pcimt_read_config_word (struct pci_dev *dev,
int where, unsigned short *val)
{
if (where & 1)
return PCIBIOS_BAD_REGISTER_NUMBER;
*pci_config_address_reg = cfgaddr(dev, where);
*val = (le32_to_cpu(*pci_config_data_reg) >> ((where&3)<<3)) & 0xffff;
//printk("pci_read_word 0x%x == 0x%x\n", where, *val);
return PCIBIOS_SUCCESSFUL;
}
int pcimt_read_config_dword (struct pci_dev *dev,
int where, unsigned int *val)
{
if (where & 3)
return PCIBIOS_BAD_REGISTER_NUMBER;
*pci_config_address_reg = cfgaddr(dev, where);
*val = le32_to_cpu(*pci_config_data_reg);
//printk("pci_read_dword 0x%x == 0x%x\n", where, *val);
return PCIBIOS_SUCCESSFUL;
}
static int pcimt_write_config_byte (struct pci_dev *dev,
int where, unsigned char val)
{
*pci_config_address_reg = cfgaddr(dev, where);
*(volatile u8 *)(((int)pci_config_data_reg) + (where & 3)) = val;
//printk("pci_write_byte 0x%x = 0x%x\n", where, val);
return PCIBIOS_SUCCESSFUL;
}
static int pcimt_write_config_word (struct pci_dev *dev,
int where, unsigned short val)
{
if (where & 1)
return PCIBIOS_BAD_REGISTER_NUMBER;
*pci_config_address_reg = cfgaddr(dev, where);
*(volatile u16 *)(((int)pci_config_data_reg) + (where & 2)) =
le16_to_cpu(val);
//printk("pci_write_word 0x%x = 0x%x\n", where, val);
return PCIBIOS_SUCCESSFUL;
}
int pcimt_write_config_dword (struct pci_dev *dev,
int where, unsigned int val)
{
if (where & 3)
return PCIBIOS_BAD_REGISTER_NUMBER;
*pci_config_address_reg = cfgaddr(dev, where);
*pci_config_data_reg = le32_to_cpu(val);
//printk("pci_write_dword 0x%x = 0x%x\n", where, val);
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops hp_pci_ops = {
pcimt_read_config_byte,
pcimt_read_config_word,
pcimt_read_config_dword,
pcimt_write_config_byte,
pcimt_write_config_word,
pcimt_write_config_dword
};
struct pci_channel mips_pci_channels[] = {
{ &hp_pci_ops, &ioport_resource, &iomem_resource },
{ NULL, NULL, NULL }
};
unsigned __init int pcibios_assign_all_busses(void)
{
return 1;
}
void __init pcibios_fixup(void)
{
}
void __init pcibios_fixup_irqs(void)
{
struct pci_dev *dev;
int slot_num;
pci_for_each_dev(dev) {
slot_num = PCI_SLOT(dev->devfn);
switch(slot_num) {
case 2: dev->irq = 3; break;
case 3: dev->irq = 4; break;
case 4: dev->irq = 5; break;
default: break;
}
}
}
#define IO_MEM_LOGICAL_START 0x3e000000
#define IO_MEM_LOGICAL_END 0x3fefffff
#define IO_PORT_LOGICAL_START 0x3ff00000
#define IO_PORT_LOGICAL_END 0x3fffffff
#define IO_MEM_VIRTUAL_OFFSET 0xb0000000
#define IO_PORT_VIRTUAL_OFFSET 0xb0000000
#define ONE_MEG (1024 * 1024)
void __init pci_setup(void)
{
u32 pci_regs_base_offset = 0xfdead000;
switch(GetAsicId()) {
case AndrosAsic: pci_regs_base_offset = 0xbff80000; break;
case HarmonyAsic: pci_regs_base_offset = 0xbff70000; break;
default:
printk("ERROR: PCI does not support %s Asic\n", GetAsicName());
while(1);
break;
}
// set bus stat/command reg
// REVIST this setting may need vary depending on the hardware
*((volatile unsigned int*)(pci_regs_base_offset | 0x0004)) = 0x38000007;
iomem_resource.start = IO_MEM_LOGICAL_START + IO_MEM_VIRTUAL_OFFSET;
iomem_resource.end = IO_MEM_LOGICAL_END + IO_MEM_VIRTUAL_OFFSET;
ioport_resource.start = IO_PORT_LOGICAL_START + IO_PORT_VIRTUAL_OFFSET;
ioport_resource.end = IO_PORT_LOGICAL_END + IO_PORT_VIRTUAL_OFFSET;
// KLUDGE (mips_io_port_base is screwed up, we've got to work around it here)
// by letting both low (illegal) and high (legal) addresses appear in pci io space
ioport_resource.start = 0x0;
set_io_port_base(IO_PORT_LOGICAL_START + IO_PORT_VIRTUAL_OFFSET);
// map the PCI address space
// global map - all levels & processes can access
// except that the range is outside user space
// parameters: lo0, lo1, hi, pagemask
// lo indicates physical page, hi indicates virtual address
add_wired_entry((IO_MEM_LOGICAL_START >> 6) | 0x17,
((IO_MEM_LOGICAL_START + (16 * ONE_MEG)) >> 6) | 0x17,
0xee000000, PM_16M);
// These are used in pci r/w routines so need to preceed bus scan
pci_config_data_reg = (u32*) (((u32)mips_io_port_base) | 0xcfc);
pci_config_address_reg = (u32*) (((u32)pci_regs_base_offset) | 0xcf8);
}
void __init pcibios_fixup_resources(struct pci_dev *dev)
{
int pos;
int bases;
printk("adjusting pci device: %s\n", dev->name);
switch (dev->hdr_type) {
case PCI_HEADER_TYPE_NORMAL: bases = 6; break;
case PCI_HEADER_TYPE_BRIDGE: bases = 2; break;
case PCI_HEADER_TYPE_CARDBUS: bases = 1; break;
default: bases = 0; break;
}
for (pos=0; pos < bases; pos++) {
struct resource* res = &dev->resource[pos];
if (res->start >= IO_MEM_LOGICAL_START &&
res->end <= IO_MEM_LOGICAL_END) {
res->start += IO_MEM_VIRTUAL_OFFSET;
res->end += IO_MEM_VIRTUAL_OFFSET;
}
if (res->start >= IO_PORT_LOGICAL_START &&
res->end <= IO_PORT_LOGICAL_END) {
res->start += IO_PORT_VIRTUAL_OFFSET;
res->end += IO_PORT_VIRTUAL_OFFSET;
}
}
}
#endif /* CONFIG_PCI */