/*
* linux/arch/cris/kernel/setup.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (c) 2001, 2002, 2003 Axis Communications AB
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/smp.h>
#include <asm/pgtable.h>
#include <asm/types.h>
#include <asm/svinto.h>
/*
* Setup options
*/
struct drive_info_struct { char dummy[32]; } drive_info;
struct screen_info screen_info;
unsigned char aux_device_present;
extern int root_mountflags;
extern char _etext, _edata, _end;
#define COMMAND_LINE_SIZE 256
static char command_line[COMMAND_LINE_SIZE] = { 0, };
char saved_command_line[COMMAND_LINE_SIZE];
extern const unsigned long text_start, edata; /* set by the linker script */
extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
/* This mainly sets up the memory area, and can be really confusing.
*
* The physical DRAM is virtually mapped into dram_start to dram_end
* (usually c0000000 to c0000000 + DRAM size). The physical address is
* given by the macro __pa().
*
* In this DRAM, the kernel code and data is loaded, in the beginning.
* It really starts at c0004000 to make room for some special pages -
* the start address is text_start. The kernel data ends at _end. After
* this the ROM filesystem is appended (if there is any).
*
* Between this address and dram_end, we have RAM pages usable to the
* boot code and the system.
*
*/
void __init
setup_arch(char **cmdline_p)
{
extern void init_etrax_debug(void);
unsigned long bootmap_size;
unsigned long start_pfn, max_pfn;
unsigned long memory_start;
/* register an initial console printing routine for printk's */
init_etrax_debug();
/* we should really poll for DRAM size! */
high_memory = &dram_end;
if(romfs_in_flash || !romfs_length) {
/* if we have the romfs in flash, or if there is no rom filesystem,
* our free area starts directly after the BSS
*/
memory_start = (unsigned long) &_end;
} else {
/* otherwise the free area starts after the ROM filesystem */
printk(KERN_INFO "ROM fs in RAM, size %lu bytes\n",
romfs_length);
memory_start = romfs_start + romfs_length;
}
/* process 1's initial memory region is the kernel code/data */
init_mm.start_code = (unsigned long) &text_start;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
#define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)
#define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
#define PFN_PHYS(x) ((x) << PAGE_SHIFT)
/* min_low_pfn points to the start of DRAM, start_pfn points
* to the first DRAM pages after the kernel, and max_low_pfn
* to the end of DRAM.
*/
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(memory_start); /* usually c0000000 + kernel + romfs */
max_pfn = PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
/*
* Initialize the boot-time allocator (start, end)
*
* We give it access to all our DRAM, but we could as well just have
* given it a small slice. No point in doing that though, unless we
* have non-contiguous memory and want the boot-stuff to be in, say,
* the smallest area.
*
* It will put a bitmap of the allocated pages in the beginning
* of the range we give it, but it won't mark the bitmaps pages
* as reserved. We have to do that ourselves below.
*
* We need to use init_bootmem_node instead of init_bootmem
* because our map starts at a quite high address (min_low_pfn).
*/
max_low_pfn = max_pfn;
min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
min_low_pfn,
max_low_pfn);
/* And free all memory not belonging to the kernel (addr, size) */
free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
/*
* Reserve the bootmem bitmap itself as well. We do this in two
* steps (first step was init_bootmem()) because this catches
* the (very unlikely) case of us accidentally initializing the
* bootmem allocator with an invalid RAM area.
*
* Arguments are start, size
*/
reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size);
/* paging_init() sets up the MMU and marks all pages as reserved */
paging_init();
/* We dont use a command line yet, so just re-initialize it without
saving anything that might be there. */
*cmdline_p = command_line;
#ifdef CONFIG_ETRAX_CMDLINE
strncpy(command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
#elif defined(CONFIG_ETRAX_ROOT_DEVICE)
strncpy(command_line, "root=", COMMAND_LINE_SIZE);
strncpy(command_line+5, CONFIG_ETRAX_ROOT_DEVICE,
COMMAND_LINE_SIZE-5);
#endif
command_line[COMMAND_LINE_SIZE - 1] = '\0';
/* Save command line copy for /proc/cmdline */
memcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
/* give credit for the CRIS port */
printk(KERN_INFO "Linux/CRIS port on ETRAX 100LX (c) 2001, 2002 Axis Communications AB\n");
}
#ifdef CONFIG_PROC_FS
#define HAS_FPU 0x0001
#define HAS_MMU 0x0002
#define HAS_ETHERNET100 0x0004
#define HAS_TOKENRING 0x0008
#define HAS_SCSI 0x0010
#define HAS_ATA 0x0020
#define HAS_USB 0x0040
#define HAS_IRQ_BUG 0x0080
#define HAS_MMU_BUG 0x0100
static struct cpu_info {
char *model;
unsigned short cache;
unsigned short flags;
} cpu_info[] = {
/* The first four models will never ever run this code and are
only here for display. */
{ "ETRAX 1", 0, 0 },
{ "ETRAX 2", 0, 0 },
{ "ETRAX 3", 0, HAS_TOKENRING },
{ "ETRAX 4", 0, HAS_TOKENRING | HAS_SCSI },
{ "Unknown", 0, 0 },
{ "Unknown", 0, 0 },
{ "Unknown", 0, 0 },
{ "Simulator", 8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA },
{ "ETRAX 100", 8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA | HAS_IRQ_BUG },
{ "ETRAX 100", 8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA },
{ "ETRAX 100LX", 8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA | HAS_USB | HAS_MMU | HAS_MMU_BUG },
{ "ETRAX 100LX v2", 8, HAS_ETHERNET100 | HAS_SCSI | HAS_ATA | HAS_USB | HAS_MMU },
{ "Unknown", 0, 0 } /* This entry MUST be the last */
};
static int show_cpuinfo(struct seq_file *m, void *v)
{
unsigned long revision;
struct cpu_info *info;
/* read the version register in the CPU and print some stuff */
revision = rdvr();
if (revision >= sizeof cpu_info/sizeof *cpu_info)
info = &cpu_info[sizeof cpu_info/sizeof *cpu_info - 1];
else
info = &cpu_info[revision];
return seq_printf(m,
"processor\t: 0\n"
"cpu\t\t: CRIS\n"
"cpu revision\t: %lu\n"
"cpu model\t: %s\n"
"cache size\t: %d kB\n"
"fpu\t\t: %s\n"
"mmu\t\t: %s\n"
"mmu DMA bug\t: %s\n"
"ethernet\t: %s Mbps\n"
"token ring\t: %s\n"
"scsi\t\t: %s\n"
"ata\t\t: %s\n"
"usb\t\t: %s\n"
"bogomips\t: %lu.%02lu\n",
revision,
info->model,
info->cache,
info->flags & HAS_FPU ? "yes" : "no",
info->flags & HAS_MMU ? "yes" : "no",
info->flags & HAS_MMU_BUG ? "yes" : "no",
info->flags & HAS_ETHERNET100 ? "10/100" : "10",
info->flags & HAS_TOKENRING ? "4/16 Mbps" : "no",
info->flags & HAS_SCSI ? "yes" : "no",
info->flags & HAS_ATA ? "yes" : "no",
info->flags & HAS_USB ? "yes" : "no",
(loops_per_jiffy * HZ + 500) / 500000,
((loops_per_jiffy * HZ + 500) / 5000) % 100);
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
/* We only got one CPU... */
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
start: c_start,
next: c_next,
stop: c_stop,
show: show_cpuinfo,
};
#endif /* CONFIG_PROC_FS */