File: [Development] / inventor / lib / database / src / sb / SbSphere.c++ (download)
Revision 1.1.1.1 (vendor branch), Tue Aug 15 12:56:17 2000 UTC (17 years, 2 months ago) by naaman
Branch: sgi, MAIN
CVS Tags: start, release-2_1_5-9, release-2_1_5-8, release-2_1_5-10, HEAD Changes since 1.1: +0 -0
lines
Initial check-in based on 2.1.5 (SGI IRIX) source tree.
|
/*
*
* Copyright (C) 2000 Silicon Graphics, Inc. All Rights Reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/NoticeExplan/
*
*/
/*
* Copyright (C) 1990,91 Silicon Graphics, Inc.
*
_______________________________________________________________________
______________ S I L I C O N G R A P H I C S I N C . ____________
|
| $Revision: 1.1.1.1 $
|
| Classes:
| SbSphere
|
| Author(s) : Nick Thompson, David Mott
|
______________ S I L I C O N G R A P H I C S I N C . ____________
_______________________________________________________________________
*/
#include <Inventor/SbLinear.h>
#include <Inventor/SbBox.h>
//////////////////////////////////////////////////////////////////////////////
//
// Sphere class
//
//////////////////////////////////////////////////////////////////////////////
// construct a sphere given a center and radius
SbSphere::SbSphere(const SbVec3f &c, float r)
{
center = c;
radius = r;
}
// Change the center and radius
void
SbSphere::setValue(const SbVec3f &c, float r)
{
center = c;
radius = r;
}
//////////////////////////////////////////////////////////////////////////////
//
// Change just the center
//
void
SbSphere::setCenter(const SbVec3f &c)
//
//////////////////////////////////////////////////////////////////////////////
{
center = c;
}
//////////////////////////////////////////////////////////////////////////////
//
// Change just the radius
//
void
SbSphere::setRadius(float r)
//
//////////////////////////////////////////////////////////////////////////////
{
radius = r;
}
//////////////////////////////////////////////////////////////////////////////
//
// Return a sphere containing a given box
//
void
SbSphere::circumscribe(const SbBox3f &box)
//
//////////////////////////////////////////////////////////////////////////////
{
center = 0.5 * (box.getMin() + box.getMax());
radius = (box.getMax() - center).length();
}
//////////////////////////////////////////////////////////////////////////////
//
// Sphere line intersection - this sets the parameter intersection,
// and returns TRUE if the line and sphere really do intersect.
//
// line-sphere intersection algorithm lifted from Eric Haines chapter in
// Glassner's "Introduction to Ray Tracing", pp. 35-7
//
SbBool
SbSphere::intersect(const SbLine &l, SbVec3f &intersection) const
//
//////////////////////////////////////////////////////////////////////////////
{
float B,C; // At^2 + Bt + C = 0, but A is 1 since we normalize Rd
float discr; // discriminant (B^2 - 4AC)
SbVec3f v;
float t,sqroot;
SbBool doesIntersect = TRUE;
// setup B,C
v = l.getPosition() - center;
B = 2.0 * (l.getDirection().dot(v));
C = v.dot(v) - (radius * radius);
// compute discriminant
// if negative, there is no intersection
discr = B*B - 4.0*C;
if (discr < 0.0) {
// line and sphere do not intersect
doesIntersect = FALSE;
}
else {
// compute t0: (-B - sqrt(B^2 - 4AC)) / 2A (A = 1)
sqroot = sqrtf(discr);
t = (-B - sqroot) * 0.5;
if (t < 0.0) {
// no intersection, try t1: (-B + sqrt(B^2 - 4AC)) / 2A (A = 1)
t = (-B + sqroot) * 0.5;
}
if (t < 0.0) {
// line and sphere do not intersect
doesIntersect = FALSE;
}
else {
// intersection! point is (point + (dir * t))
intersection = l.getPosition() + (l.getDirection() * t);
}
}
return doesIntersect;
}
//////////////////////////////////////////////////////////////////////////////
//
// Sphere line intersection - this sets the parameter intersection,
// and returns TRUE if the line and sphere really do intersect.
//
// line-sphere intersection algorithm lifted from Eric Haines chapter in
// Glassner's "Introduction to Ray Tracing", pp. 35-7
//
SbBool
SbSphere::intersect(const SbLine &l, SbVec3f &enter, SbVec3f &exit) const
//
//////////////////////////////////////////////////////////////////////////////
{
float B,C; // At^2 + Bt + C = 0, but A is 1 since we normalize Rd
float discr; // discriminant (B^2 - 4AC)
SbVec3f v;
float sqroot;
SbBool doesIntersect = TRUE;
// setup B,C
v = l.getPosition() - center;
B = 2.0 * (l.getDirection().dot(v));
C = v.dot(v) - (radius * radius);
// compute discriminant
// if negative, there is no intersection
discr = B*B - 4.0*C;
if (discr < 0.0) {
// line and sphere do not intersect
doesIntersect = FALSE;
}
else {
sqroot = sqrtf(discr);
float t0 = (-B - sqroot) * 0.5;
enter = l.getPosition() + (l.getDirection() * t0);
float t1 = (-B + sqroot) * 0.5;
exit = l.getPosition() + (l.getDirection() * t1);
}
return doesIntersect;
}