/*
*
* Copyright (C) 2000 Silicon Graphics, Inc. All Rights Reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/NoticeExplan/
*
*/
/*
| Description:
| Defines the NurbMaker class. Given a quadMesh,
| a bunch of parameters, it creates a group node with a bunch
| of SoIndexedNurbsSurface nodes. These nodes will create a nurbs
| surface if placed after an SoCoordinate3 node with the number of
| points specified by the QuadMesh node.
|
| Note that you only need to look at the SoCoordinate3 node if
| you need to figure out whether edges match for wraparound.
| Otherwise this is all strictly 'topological'
|
| Author(s) : Paul Isaacs
*/
#include <Inventor/nodes/SoCoordinate3.h>
#include <Inventor/nodes/SoGroup.h>
#include <Inventor/nodes/SoQuadMesh.h>
#include <Inventor/nodes/SoIndexedNurbsSurface.h>
#include "NurbMaker.h"
// These knot vectors are used to make CUBIC_TO_EDGE splines
// meet up with the mesh edge.
static float cubic2FromLateEdgeKnots[8] = { 0, 1, 2, 3, 4, 5, 6, 6 };
static float cubic1FromLateEdgeKnots[8] = { 0, 1, 2, 3, 4, 5, 5, 5 };
static float cubic0FromLateEdgeKnots[8] = { 0, 1, 2, 3, 4, 4, 4, 4 };
static float cubic2FromEarlyEdgeKnots[8] = { 0, 0, 1, 2, 3, 4, 5, 6 };
static float cubic1FromEarlyEdgeKnots[8] = { 0, 0, 0, 1, 2, 3, 4, 5 };
static float cubic0FromEarlyEdgeKnots[8] = { 0, 0, 0, 0, 1, 2, 3, 4 };
// Creates group with new SoIndexedNurbsSurface nodes underneath.
SoGroup *
NurbMaker::createNurbsGroup( SoQuadMesh *quadNode, SoCoordinate3 *coordNode )
{
SbBool rowsMatch = FALSE;
SbBool colsMatch = FALSE;
int vPerCol = (int) quadNode->verticesPerColumn.getValue();
int vPerRow = (int) quadNode->verticesPerRow.getValue();
SbVec2s quadMeshDivs( vPerRow, vPerCol );
// Only bother checking if we're wrapping.
if (coordNode != NULL && myWrap[0] == TRUE) {
rowsMatch = TRUE;
// Test if first and last row are the same.
for (int topInd = 0, botInd = vPerRow * (vPerCol - 1);
topInd < vPerRow; topInd++, botInd++ ) {
if ( coordNode->point[topInd] != coordNode->point[botInd] ) {
rowsMatch = FALSE;
}
}
}
if (coordNode != NULL && myWrap[1] == TRUE) {
SbBool colsMatch = TRUE;
// Test if first and last col are the same.
for (int leftInd = 0, rightInd = vPerRow - 1;
leftInd < vPerRow * (vPerCol - 1);
leftInd += vPerRow, rightInd += vPerRow) {
if ( coordNode->point[leftInd] != coordNode->point[rightInd] ) {
colsMatch = FALSE;
}
}
}
return ( createNurbsGroup( quadMeshDivs, SbVec2s(rowsMatch,colsMatch )));
}
// Creates group with new SoIndexedNurbsSurface nodes underneath.
SoGroup *
NurbMaker::createNurbsGroup( SbVec2s numQuadMeshDivisions,
SbVec2s doEdgesMatch )
{
establishMyKnotParams();
// The patch size is the number of control points on the side
// of each patch. It's determined by the number of knots and order
SbVec2s patchSize = myNumKnots - myOrder;
// Make a group to put the new NURBS under
if (nurbsGroup != NULL)
nurbsGroup->unref();
nurbsGroup = new SoGroup;
nurbsGroup->ref();
// What are the mesh dimensions?
int vPerRow = (int) numQuadMeshDivisions[0];
int vPerCol = (int) numQuadMeshDivisions[1];
// Determine last row and last column that we can use for our
// upper left corner of our little patch.
// Initially, figure that the last patch's right/bottom edge
// need to line up with the mesh's right/bottom edge.
int lastRowToDo = vPerCol - patchSize[1];
int lastColToDo = vPerRow - patchSize[0];
// If we don't wrap, all rows and columns are used.
// If we are wrapping and the first&last row/column are the same,
// then we will never use the last row/column.
int numUseableRows = vPerCol;
int numUseableCols = vPerRow;
// If we're wrapping rows, the last patch left edge is the same as the
// mesh's right edge.
// But if the left and right edges of the mesh are identical, we don't
// need to repeat the set of patches that uses the mesh's right edge as
// their own (the patches' own) left edge.
if (myWrap[0] == TRUE) {
if (doEdgesMatch[0]) {
lastRowToDo = vPerCol - 2;
numUseableRows = vPerCol - 1;
}
else {
lastRowToDo = vPerCol - 1;
numUseableRows = vPerCol;
}
}
// If we're wrapping cols, the last patch top edge is the same as the
// mesh's bottom edge.
// But if the top and bottom edges of the mesh are identical, we don't
// need to repeat the set of patches that uses the mesh's bottom edge as
// their own (the patches' own) top edge.
if (myWrap[1] == TRUE) {
if (doEdgesMatch[1]) {
lastColToDo = vPerRow - 2;
numUseableCols = vPerRow - 1;
}
else {
lastColToDo = vPerRow - 1;
numUseableCols = vPerRow;
}
}
// In each patch, we will lay down the coordinate indices as either
// increasing from left to right , as in:
// 0 1 2 3
// 4 5 6 7
// 8 9 10 11
// 12 13 14 15
//
// or increasing from right to left, depending on 'flipNormals'
// 3 2 1 0
// 7 6 5 4
// 11 10 9 8
// 15 14 13 12
int numPatchInds = patchSize[0] * patchSize[1];
int *patchInds = new int [ numPatchInds ];
if ( flipNormals == FALSE ) {
for (int i = 0, count=0; i < patchSize[1]; i++ ){
for(int j = 0; j < patchSize[0]; j++ ) {
patchInds[count] = (i * patchSize[0]) + j;
count++;
}
}
}
else for (int i = 0, count=0; i < patchSize[1]; i++ ){
for(int j = patchSize[0]-1; j >=0; j--) {
patchInds[count] = (i * patchSize[0]) + j;
count++;
}
}
// Now, create the patches. Each is a nurb with
// a patchSize[0]by patchSize[1] control point patch.
// The knots are as already established.
for ( int row = 0; row <= lastRowToDo; row+= myShift[0] ) {
for ( int col = 0; col <= lastColToDo; col+= myShift[1] ) {
// Create the NURB and set the easy fields...
SoIndexedNurbsSurface *myNurb = new SoIndexedNurbsSurface;
nurbsGroup->addChild(myNurb);
myNurb->numUControlPoints = patchSize[0];
myNurb->numVControlPoints = patchSize[1];
if ( patchType != CUBIC_TO_EDGE) {
myNurb->uKnotVector.setValues(0,myNumKnots[0],myUKnots);
myNurb->vKnotVector.setValues(0,myNumKnots[1],myVKnots);
}
else {
applyCubicToEdgeKnotVectors(row, col, myNurb,
lastRowToDo, lastColToDo);
}
for (int pRow = 0,count = 0; pRow < patchSize[1]; pRow++ ) {
// Now we've got to set up the indices. Determine the row
// number in the quadmesh (0<=value<numUseableRows)
// to use as the row number in the patch( 0<=pRow<patchSize[1])
int rowInQuadMesh = row + pRow;
// Now check to see if we need to wraparound this row.
if (rowInQuadMesh >= numUseableRows)
rowInQuadMesh -= numUseableRows;
for (int pCol = 0; pCol < patchSize[0]; pCol++ ) {
// Determine the col number in the mesh
// (0<=value<numUseableCols) to use as the col number
// in the patch( 0<=pRow<patchSize[0])
int colInQuadMesh = col + pCol;
// Now check to see if we need to wraparound this column.
if (colInQuadMesh >= numUseableCols)
colInQuadMesh -= numUseableCols;
myNurb->coordIndex.set1Value( patchInds[count],
rowInQuadMesh * vPerRow + colInQuadMesh);
count++;
}
}
}
}
return nurbsGroup;
}
NurbMaker::NurbMaker()
{
nurbsGroup = NULL;
patchType = CUBIC_TO_EDGE;
myNumKnots.setValue(0,0);
myUKnots = myVKnots = NULL;
myOrder.setValue(4,4);
myShift.setValue(1,1);
myWrap.setValue(0,0);
userNumKnots.setValue(0,0);
userUKnots = userVKnots = NULL;
userOrder.setValue(4,4);
flipNormals = FALSE;
}
NurbMaker::~NurbMaker()
{
if (nurbsGroup) {
nurbsGroup->unref();
nurbsGroup = NULL;
}
}
void
NurbMaker::establishMyKnotParams()
{
int i;
// Take care of knot array allocation.
if ( patchType == BEZIER || patchType == CUBIC
|| patchType == CUBIC_TO_EDGE ) {
if ( myNumKnots[0] != 8 ) {
if (myUKnots != NULL) delete []myUKnots;
myNumKnots[0] = 8;
myUKnots = new float[8];
}
if ( myNumKnots[1] != 8 ) {
if (myVKnots != NULL) delete []myVKnots;
myNumKnots[1] = 8;
myVKnots = new float[8];
}
}
else {
if (myUKnots != NULL) delete []myUKnots;
if (myVKnots != NULL) delete []myVKnots;
myNumKnots = userNumKnots;
myUKnots = new float[myNumKnots[0]];
myVKnots = new float[myNumKnots[1]];
}
// Take care of knot values and order values.
switch (patchType) {
case BEZIER:
myOrder.setValue(4,4);
for (i = 0; i < 4; i++)
myUKnots[i] = myVKnots[i] = 0;
for (i = 4; i < 8; i++)
myUKnots[i] = myVKnots[i] = 1;
break;
case CUBIC:
case CUBIC_TO_EDGE:
myOrder.setValue(4,4);
for (i = 0; i < 8; i++)
myUKnots[i] = myVKnots[i] = i;
break;
case USER_KNOTS:
myOrder = userOrder;
for (i = 0; i < myNumKnots[0]; i++)
myUKnots[i] = userUKnots[i];
for (i = 0; i < myNumKnots[1]; i++) {
myVKnots[i] = userVKnots[i];
}
break;
}
}
void
NurbMaker::setUserKnots( SbVec2s newNumKnots,
float *newUKnots, float *newVKnots)
{
userNumKnots = newNumKnots;
if (userUKnots == NULL)
delete [] userUKnots;
if (userVKnots == NULL)
delete [] userVKnots;
userUKnots = new float [userNumKnots[0]];
userVKnots = new float [userNumKnots[1]];
for (int i = 0; i < userNumKnots[0]; i++ )
userUKnots[i] = newUKnots[i];
for (int j = 0; j < userNumKnots[1]; j++ )
userVKnots[j] = newVKnots[j];
}
void
NurbMaker::getUserKnots( SbVec2s &numKnots,
float * UKnots, float * VKnots)
{
numKnots = userNumKnots;
if (UKnots == NULL)
delete [] UKnots;
if (VKnots == NULL)
delete [] VKnots;
UKnots = new float [userNumKnots[0]];
VKnots = new float [userNumKnots[1]];
for (int i = 0; i < userNumKnots[0]; i++ )
UKnots[i] = userUKnots[i];
for (int j = 0; j < userNumKnots[1]; j++ )
VKnots[j] = userVKnots[j];
}
void
NurbMaker::setPatchType(PatchType newPatchType)
{
patchType = newPatchType;
if (patchType == BEZIER) {
myShift.setValue(3,3);
}
else if (patchType == CUBIC || patchType == CUBIC_TO_EDGE) {
myShift.setValue(1,1);
}
}
void
NurbMaker::applyCubicToEdgeKnotVectors(int row, int col,
SoIndexedNurbsSurface *myNurb, int lastRowToDo, int lastColToDo)
{
float *uKs, *vKs;
if ( myWrap[1] ) uKs = myUKnots;
else if (col == 0 ) uKs = cubic0FromEarlyEdgeKnots;
else if (col == lastColToDo) uKs = cubic0FromLateEdgeKnots;
else if (col == 1 ) uKs = cubic1FromEarlyEdgeKnots;
else if (col == lastColToDo-1) uKs = cubic1FromLateEdgeKnots;
else if (col == 2 ) uKs = cubic2FromEarlyEdgeKnots;
else if (col == lastColToDo-2) uKs = cubic2FromLateEdgeKnots;
else uKs = myUKnots;
if ( myWrap[0] ) vKs = myVKnots;
else if (row == 0 ) vKs = cubic0FromEarlyEdgeKnots;
else if (row == lastRowToDo) vKs = cubic0FromLateEdgeKnots;
else if (row == 1 ) vKs = cubic1FromEarlyEdgeKnots;
else if (row == lastRowToDo-1) vKs = cubic1FromLateEdgeKnots;
else if (row == 2 ) vKs = cubic2FromEarlyEdgeKnots;
else if (row == lastRowToDo-2) vKs = cubic2FromLateEdgeKnots;
else vKs = myVKnots;
myNurb->uKnotVector.setValues(0,8,uKs);
myNurb->vKnotVector.setValues(0,8,vKs);
};