[Top] [All Lists]

Re: [RFC 11/32] xfs: convert to struct inode_time

To: Theodore Ts'o <tytso@xxxxxxx>
Subject: Re: [RFC 11/32] xfs: convert to struct inode_time
From: Arnd Bergmann <arnd@xxxxxxxx>
Date: Mon, 02 Jun 2014 17:01:20 +0200
Cc: Nicolas Pitre <nicolas.pitre@xxxxxxxxxx>, "H. Peter Anvin" <hpa@xxxxxxxxx>, Dave Chinner <david@xxxxxxxxxxxxx>, linux-kernel@xxxxxxxxxxxxxxx, linux-arch@xxxxxxxxxxxxxxx, joseph@xxxxxxxxxxxxxxxx, john.stultz@xxxxxxxxxx, hch@xxxxxxxxxxxxx, tglx@xxxxxxxxxxxxx, geert@xxxxxxxxxxxxxx, lftan@xxxxxxxxxx, linux-fsdevel@xxxxxxxxxxxxxxx, xfs@xxxxxxxxxxx
Delivered-to: xfs@xxxxxxxxxxx
In-reply-to: <20140602130700.GC14276@xxxxxxxxx>
References: <1401480116-1973111-1-git-send-email-arnd@xxxxxxxx> <15496653.1vSv1RUCC0@wuerfel> <20140602130700.GC14276@xxxxxxxxx>
User-agent: KMail/4.11.5 (Linux/3.11.0-18-generic; KDE/4.11.5; x86_64; ; )
On Monday 02 June 2014 09:07:00 Theodore Ts'o wrote:
> Yes, there are some ongoing dicussions about changing the post-2038
> encoding of the timestamp in ext4, which is why this hasn't been fixed
> yet.  The main thing that's been missing is time for me to review the
> patches, and a good way of writing regression tests that will work (or
> at least not fail) on build environments with a 32-bit time_t and
> 32-bit-only capable versions of functions such as gmtime(3).
> And given current discussions, I may want to think about some kind of
> superblock flag to allow the use of a 32-bit unsigned encoding for
> file systems using a 128-byte inode, with a way of setting that flag
> after scanning the file system to make sure there are no times that
> are previous to January 1, 1970.  (Or more generally, allow any epoch
> to be defined using a 64-bit time_t offset stored in the superblock...)

FWIW, I've gone through the other file system implementations once
more. The most common pattern I've encountered is to have a read_inode
function with

        inode->i_mtime = le32_to_cpu(raw_inode->mtime);

which results in interpreting the time as 'signed' on 32-bit
kernels, but as 'unsigned' on 64-bit kernels. This could have been
done intentionally to extend the valid time range to 2106 on 64-bit
kernels, but it seems more likely that the code was written with
no thought given to 64-bit time_t at all. I see this pattern on
p9fs (old protocol only), afs, bfs, ceph, efs, freevxfs, hpfs, jffs2,
jfs, minix, nfsv2/v3 (this was clearly intentional and is
spelled out in the RFC), qnx4, qnx6, reiserfs, squashfs, sysv,
and ufs (protocol version 1 only).

The other behavior I see is to treat the on-disk 32-bit value
as signed on both 32-bit and 64-bit kernels:

        inode->i_mtime = (signed)le32_to_cpu(raw_inode->mtime);

this seems to be done intentionally in all cases, to maintain
compatibility between 32-bit and 64-bit kernels, but it's
relatively rare: exofs, ext2/3/4 (good old inodes) and xfs
are the only ones doing this.

In case of ext2/3/4, the sign handlign was introduced here:

exofs and xfs seem to have done it like this for all of git


<Prev in Thread] Current Thread [Next in Thread>